Some Progress on Kierstead's Conjecture

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

CTFM 2015, TIT

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In celebration of Prof. Tanaka's 60th Birthday.

Computable Linear Orderings

 (L, \leq) is a computable linear ordering, if \leq is a linear ordering on L and both L and \leq are computable.

Some order types:

- ► ω;
- ▶ ω*;
- η;
- ► ζ;
- addition and product.

Folklore

There is a computable linear ordering *L* of order type ω with S(x), the successor function, not computable.

References:

- Computability Theory and Linear Orderings, Rod Downey, Chapter 14 in "Handbook of Recursive Mathematics".
- Linear Orderings, J. G. Rosenstein, 1982.

About η

Folklore

 η is computably categorical (or autostable).

About η

Folklore

 η is computably categorical (or autostable).

Remmel's Characterization

A computable linear ordering (L, \leq) is computably categorical if and only if it has only finitely many successivities.

A classical result

Any infinite linear ordering has an infinite subordering of order type either ω or $\omega^*.$

Theorem (Tennenbaum, Denisov)

There is a computable linear ordering of order type $\omega+\omega^*$ with no infinite computably enumerable suborderings of order type ω or $\omega^*.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A classical result

Any infinite linear ordering has an infinite subordering of order type either ω or $\omega^*.$

Theorem (Tennenbaum, Denisov)

There is a computable linear ordering of order type $\omega+\omega^*$ with no infinite computably enumerable suborderings of order type ω or $\omega^*.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

View from reverse math.

Theorem (Rosenstein)

If (L, \leq) is a computable linear ordering, then it has a computable subordering of type $\omega, \omega^*, \omega + \omega^*$ or $\omega + \zeta \eta + \omega^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Rosenstein)

If (L, \leq) is a computable linear ordering, then it has a computable subordering of type $\omega, \omega^*, \omega + \omega^*$ or $\omega + \zeta \eta + \omega^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rosenstein asks whether $\omega + \zeta \eta + \omega^*$ is necessary.

Theorem (Rosenstein)

If (L, \leq) is a computable linear ordering, then it has a computable subordering of type $\omega, \omega^*, \omega + \omega^*$ or $\omega + \zeta \eta + \omega^*$.

Rosenstein asks whether $\omega + \zeta \eta + \omega^*$ is necessary.

Theorem (Lerman)

There is a computable linear ordering with no computable subordering of type $\omega, \omega^*,$ or $\omega+\omega^*.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Rosenstein)

If (L, \leq) is a computable linear ordering, then it has a computable subordering of type $\omega, \omega^*, \omega + \omega^*$ or $\omega + \zeta \eta + \omega^*$.

Rosenstein asks whether $\omega + \zeta \eta + \omega^*$ is necessary.

Theorem (Lerman)

There is a computable linear ordering with no computable subordering of type $\omega, \omega^*,$ or $\omega+\omega^*.$

Theorem (Manaster)

If (L, \leq) is an infinite computable linear ordering, then L has a Π_1 subset of type ω or ω^* .

Dushnik-Miller Theorem

Every countable infinite linear ordering has a nontrivial self-embedding.

Dushnik-Miller Theorem

Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)

There is a computable linear ordering with no nontrivial computable self-embedding.

Dushnik-Miller Theorem

Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)

There is a computable linear ordering with no nontrivial computable self-embedding.

Theorem (Downey and Lempp)

There is a computable linear ordering (L, \leq) such that if f is a nontrivial self-embedding of L, then f computes \emptyset' .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dushnik-Miller Theorem is equivalent to ACA_0 over RCA_0 .

Dushnik-Miller Theorem

Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)

There is a computable linear ordering with no nontrivial computable self-embedding.

Theorem (Downey and Lempp)

There is a computable linear ordering (L, \leq) such that if f is a nontrivial self-embedding of L, then f computes \emptyset' .

Dushnik-Miller Theorem is equivalent to ACA_0 over RCA_0 .

Theorem (Downey, Jockusch and Miller)

There is a computable linear ordering of order type ω with no nontrivial **0**'-computable self-embedding.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computable rigidity

A linear ordering is computably rigid if it has no nontrivial computable automorphisms.

Theorem (Schwartz)

A computable linear ordering has a computably rigid copy if and only if it has no interval of order type η .

Computable rigidity

A linear ordering is computably rigid if it has no nontrivial computable automorphisms.

Theorem (Schwartz)

A computable linear ordering has a computably rigid copy if and only if it has no interval of order type η .

Theorem (Kierstead)

There is a computable linear ordering of type $2\cdot\eta$ with no nontrivial Π_1 automorphism.

Kierstead's conjecture

Definition (Kierstead)

An automorphism is fairly trivial if for all x, [x, f(x)] is finite. An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead's Conjecture

For a computable linear ordering \mathcal{L} , every computable copy of \mathcal{L} has a strongly nontrivial Π_1 automorphism if and only if the corresponding order type contains an interval of order type η .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Kierstead's conjecture

Definition (Kierstead)

An automorphism is fairly trivial if for all x, [x, f(x)] is finite. An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead's Conjecture

For a computable linear ordering \mathcal{L} , every computable copy of \mathcal{L} has a strongly nontrivial Π_1 automorphism if and only if the corresponding order type contains an interval of order type η .

This conjecture is true for $2 \cdot \eta$. For this case, there is no difference between "strongly nontrivial" and "nontrivial".

Kierstead's conjecture

Definition (Kierstead)

An automorphism is fairly trivial if for all x, [x, f(x)] is finite. An automorphism is strongly nontrivial a nontrivial automorphism is not fairly trivial.

Kierstead's Conjecture

For a computable linear ordering \mathcal{L} , every computable copy of \mathcal{L} has a strongly nontrivial Π_1 automorphism if and only if the corresponding order type contains an interval of order type η .

This conjecture is true for $2 \cdot \eta$. For this case, there is no difference between "strongly nontrivial" and "nontrivial".

Downey and Moses proved that it is also true for discrete computable linear orderings.

Here a linear ordering is discrete if every element has both an immediate predecessor and an immediate successor, except for the possible first and last elements.

 η -like

A linear ordering \mathcal{L} is η -like if \mathcal{L} is isomorphic to

$$\sum_{q\in\mathbb{Q}}F(q),$$

where F is a function from \mathbb{Q} to $\mathbb{N} \setminus \{0\}$.

▶ $2 \cdot \eta$ is η -like.

η -like

A linear ordering \mathcal{L} is η -like if \mathcal{L} is isomorphic to

$$\sum_{q\in\mathbb{Q}}F(q),$$

where *F* is a function from \mathbb{Q} to $\mathbb{N}\setminus\{0\}$.

▶ $2 \cdot \eta$ is η -like.

Theorem (Harris, Lee and Cooper)

Suppose that $F : \mathbb{Q} \to \mathbb{N} \setminus \{0\}$ is \emptyset' -limitwise monotonic and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with no (strongly) nontrivial Π_1 -automorphisms.

This theorem improves Kierstead's result a lot.

Extended \emptyset' -limitwise monotonic function

A function $F : \mathbb{Q} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ is an extended \emptyset' -limitwise monotonic function if we assume $\zeta > n$ for each $n \in \mathbb{N}$ and there is a $\mathbf{0}'$ -limitwise monotonic function $f : \mathbb{Q} \times \mathbb{N} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ such that

- 1. for all $q \in \mathbb{Q}, s \in \mathbb{N}$, $f(q, s) \leq f(q, s+1)$;
- 2. for all $q \in \mathbb{Q}$, $\lim_{s \to \infty} f(q, s) = F(q)$;
- 3. if $\lim_{s\to\infty} f(q,s) = \zeta$, then there is an s_0 such that for all $s \ge s_0$, $f(q,s) = \zeta$.

For an extended \emptyset' -limitwise monotonic function F, we define linear ordering $\sum_{q \in \mathbb{Q}} F(q)$.

(日) (同) (三) (三) (三) (○) (○)

Extended \emptyset' -limitwise monotonic function

A function $F : \mathbb{Q} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ is an extended \emptyset' -limitwise monotonic function if we assume $\zeta > n$ for each $n \in \mathbb{N}$ and there is a **0**'-limitwise monotonic function $f : \mathbb{Q} \times \mathbb{N} \to (\mathbb{N} \setminus \{0\}) \cup \{\zeta\}$ such that

- 1. for all $q \in \mathbb{Q}, s \in \mathbb{N}$, $f(q, s) \leq f(q, s+1)$;
- 2. for all $q \in \mathbb{Q}$, $\lim_{s \to \infty} f(q, s) = F(q)$;
- 3. if $\lim_{s\to\infty} f(q,s) = \zeta$, then there is an s_0 such that for all $s \ge s_0$, $f(q,s) = \zeta$.

For an extended \emptyset' -limitwise monotonic function F, we define linear ordering $\sum_{q \in \mathbb{Q}} F(q)$.

This notion extends the one considered by Harris, Lee and Cooper, and maybe by Turetsky and Kach.

▶ $2 \cdot \eta + \zeta + 3 \cdot \eta$, $\zeta \cdot \eta$ are in our consideration, but not $\zeta \cdot \omega$.

Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is almost trivial if

$$(\forall x) [|[x]_{\mathcal{L}}| > 1 \rightarrow f([x]_{\mathcal{L}}) = [x]_{\mathcal{L}}].$$

 For discrete linear orderings, there is no difference between "fairly trivial" and "almost trivial".

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is almost trivial if

$$(\forall x) [|[x]_{\mathcal{L}}| > 1 \rightarrow f([x]_{\mathcal{L}}) = [x]_{\mathcal{L}}].$$

 For discrete linear orderings, there is no difference between "fairly trivial" and "almost trivial".

Theorem (Wu and Zubkov)

Suppose that F is an extended \emptyset' -limitwise monotonic function and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with only almost trivial Π_1 -automorphisms.

Almost trivial automorphisms

An automorphism f of a linear ordering $\mathcal{L} = (L, \leq)$ is almost trivial if

$$(\forall x) [|[x]_{\mathcal{L}}| > 1 \rightarrow f([x]_{\mathcal{L}}) = [x]_{\mathcal{L}}].$$

 For discrete linear orderings, there is no difference between "fairly trivial" and "almost trivial".

Theorem (Wu and Zubkov)

Suppose that F is an extended \emptyset' -limitwise monotonic function and that the linear ordering $\mathcal{L} \simeq \sum_{q \in \mathbb{Q}} F(q)$ has no dense intervals. Then \mathcal{L} has a computable copy with only almost trivial Π_1 -automorphisms.

 This generalizes Harris-Lee-Cooper's result, and covers some instances of Downey-Moses' result.

Thanks!