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Computable Linear Orderings

(L, <) is a computable linear ordering, if < is a linear ordering on L and both L
and < are computable.

Some order types:
> w;
> W
> m,
> ¢

addition and product.

v

Folklore
There is a computable linear ordering L of order type w with S(x), the
successor function, not computable.

References:

» Computability Theory and Linear Orderings, Rod Downey, Chapter 14 in
“Handbook of Recursive Mathematics”.

» Linear Orderings, J. G. Rosenstein, 1982.
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Remmel’'s Characterization
A computable linear ordering (L, <) is computably categorical if and only if it
has only finitely many successivities.



Effective considerations: Suborderings

A classical result
Any infinite linear ordering has an infinite subordering of order type either w or

w™.

Theorem (Tennenbaum, Denisov)

There is a computable linear ordering of order type w + w™ with no infinite
computably enumerable suborderings of order type w or w*.
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View from reverse math.
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More on Effective considerations

Theorem (Rosenstein)

If (L, <) is a computable linear ordering, then it has a computable subordering
of type w,w*,w+w" or w+ (N + w”.

Rosenstein asks whether w + {1 + w™ is necessary.

Theorem (Lerman)

There is a computable linear ordering with no computable subordering of type
w,w”, or w4+ w".

Theorem (Manaster)

If (L, <) is an infinite computable linear ordering, then L has a Iy subset of
type w or w*.
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Self-embeddings

Dushnik-Miller Theorem

Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)

There is a computable linear ordering with no nontrivial computable
self-embedding.

Theorem (Downey and Lempp)
There is a computable linear ordering (L, <) such that if f is a nontrivial
self-embedding of L, then f computes ()'.

Dushnik-Miller Theorem is equivalent to ACAy over RCA,.

Theorem (Downey, Jockusch and Miller)

There is a computable linear ordering of order type w with no nontrivial
0’-computable self-embedding.



Computable rigidity

A linear ordering is computably rigid if it has no nontrivial computable
automorphisms.

Theorem (Schwartz)

A computable linear ordering has a computably rigid copy if and only if it has
no interval of order type 7.



Computable rigidity

A linear ordering is computably rigid if it has no nontrivial computable
automorphisms.

Theorem (Schwartz)

A computable linear ordering has a computably rigid copy if and only if it has
no interval of order type 7.

Theorem (Kierstead)

There is a computable linear ordering of type 2 -  with no nontrivial Iy
automorphism.
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Kierstead's conjecture

Definition (Kierstead)

An automorphism is fairly trivial if for all x, [x, f(x)] is finite.
An automorphism is strongly nontrivial a nontrivial automorphism is not fairly
trivial.

Kierstead's Conjecture

For a computable linear ordering L, every computable copy of £ has a strongly
nontrivial [1; automorphism if and only if the corresponding order type contains
an interval of order type 7.

This conjecture is true for 2 - 1. For this case, there is no difference between
“strongly nontrivial” and “nontrivial”.

Downey and Moses proved that it is also true for discrete computable linear
orderings.

Here a linear ordering is discrete if every element has both an immediate
predecessor and an immediate successor, except for the possible first and last
elements.
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A linear ordering L is n-like if £ is isomorphic to
> F(a),
qeQ

where F is a function from Q to N\{0}.

> 2.7 is n-like.

Theorem (Harris, Lee and Cooper)
Suppose that F : Q — N\ {0} is ’-limitwise monotonic and that the linear

ordering £ ~ Z F(q) has no dense intervals. Then £ has a computable copy

q€Q
with no (strongly) nontrivial INi-automorphisms.

> This theorem improves Kierstead's result a lot.
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3. if lim f(q,s) = ¢, then there is an sp such that for all s > sy, f(q,s) = (.
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For an extended ()/-limitwise monotonic function F, we define linear ordering

> F(a).

qeQ

» This notion extends the one considered by Harris, Lee and Cooper, and
maybe by Turetsky and Kach.

» 2.1+ (+3-n, (- n arein our consideration, but not ¢ - w.
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Theorem (Wu and Zubkov)
Suppose that F is an extended ()'-limitwise monotonic function and that the
linear ordering £ ~ Z F(q) has no dense intervals. Then £ has a computable

qeQ
copy with only almost trivial [;-automorphisms.

> This generalizes Harris-Lee-Cooper's result, and covers some instances of
Downey-Moses’ result.



Thanks!



