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Computable Linear Orderings

(L,≤) is a computable linear ordering, if ≤ is a linear ordering on L and both L
and ≤ are computable.

Some order types:

I ω;

I ω∗;

I η;

I ζ;

I addition and product.

Folklore
There is a computable linear ordering L of order type ω with S(x), the
successor function, not computable.

References:

I Computability Theory and Linear Orderings, Rod Downey, Chapter 14 in
“Handbook of Recursive Mathematics”.

I Linear Orderings, J. G. Rosenstein, 1982.



About η

Folklore
η is computably categorical (or autostable).

Remmel’s Characterization
A computable linear ordering (L,≤) is computably categorical if and only if it
has only finitely many successivities.
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Effective considerations: Suborderings

A classical result
Any infinite linear ordering has an infinite subordering of order type either ω or
ω∗.

Theorem (Tennenbaum, Denisov)

There is a computable linear ordering of order type ω + ω∗ with no infinite
computably enumerable suborderings of order type ω or ω∗.

View from reverse math.
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More on Effective considerations

Theorem (Rosenstein)

If (L,≤) is a computable linear ordering, then it has a computable subordering
of type ω, ω∗, ω + ω∗ or ω + ζη + ω∗.

Rosenstein asks whether ω + ζη + ω∗ is necessary.

Theorem (Lerman)

There is a computable linear ordering with no computable subordering of type
ω, ω∗, or ω + ω∗.

Theorem (Manaster)

If (L,≤) is an infinite computable linear ordering, then L has a Π1 subset of
type ω or ω∗.
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Self-embeddings

Dushnik-Miller Theorem
Every countable infinite linear ordering has a nontrivial self-embedding.

Theorem (Hay and Rosenstein)

There is a computable linear ordering with no nontrivial computable
self-embedding.

Theorem (Downey and Lempp)

There is a computable linear ordering (L,≤) such that if f is a nontrivial
self-embedding of L, then f computes ∅′.

Dushnik-Miller Theorem is equivalent to ACA0 over RCA0.

Theorem (Downey, Jockusch and Miller)

There is a computable linear ordering of order type ω with no nontrivial
0′-computable self-embedding.
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Computable rigidity

A linear ordering is computably rigid if it has no nontrivial computable
automorphisms.

Theorem (Schwartz)

A computable linear ordering has a computably rigid copy if and only if it has
no interval of order type η.

Theorem (Kierstead)

There is a computable linear ordering of type 2 · η with no nontrivial Π1

automorphism.
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Kierstead’s conjecture

Definition (Kierstead)

An automorphism is fairly trivial if for all x , [x , f (x)] is finite.
An automorphism is strongly nontrivial a nontrivial automorphism is not fairly
trivial.

Kierstead’s Conjecture

For a computable linear ordering L, every computable copy of L has a strongly
nontrivial Π1 automorphism if and only if the corresponding order type contains
an interval of order type η.

This conjecture is true for 2 · η. For this case, there is no difference between
“strongly nontrivial” and “nontrivial”.

Downey and Moses proved that it is also true for discrete computable linear
orderings.

Here a linear ordering is discrete if every element has both an immediate
predecessor and an immediate successor, except for the possible first and last
elements.
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η-like

A linear ordering L is η-like if L is isomorphic to∑
q∈Q

F (q),

where F is a function from Q to N\{0}.

I 2 · η is η-like.

Theorem (Harris, Lee and Cooper)

Suppose that F : Q→ N \ {0} is ∅′-limitwise monotonic and that the linear

ordering L '
∑
q∈Q

F (q) has no dense intervals. Then L has a computable copy

with no (strongly) nontrivial Π1-automorphisms.

I This theorem improves Kierstead’s result a lot.
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Extended ∅′-limitwise monotonic function

A function F : Q→ (N \ {0}) ∪ {ζ} is an extended ∅′-limitwise monotonic
function if we assume ζ > n for each n ∈ N and there is a 0′-limitwise
monotonic function f : Q× N→ (N \ {0}) ∪ {ζ} such that

1. for all q ∈ Q, s ∈ N, f (q, s) ≤ f (q, s + 1);

2. for all q ∈ Q, lim
s→∞

f (q, s) = F (q);

3. if lim
s→∞

f (q, s) = ζ, then there is an s0 such that for all s ≥ s0, f (q, s) = ζ.

For an extended ∅′-limitwise monotonic function F , we define linear ordering∑
q∈Q

F (q).

I This notion extends the one considered by Harris, Lee and Cooper, and
maybe by Turetsky and Kach.

I 2 · η + ζ + 3 · η, ζ · η are in our consideration, but not ζ · ω.
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Almost trivial automorphisms

An automorphism f of a linear ordering L = (L,≤) is almost trivial if

(∀x)
[
|[x ]L| > 1 → f ([x ]L) = [x ]L

]
.

I For discrete linear orderings, there is no difference between “fairly trivial”
and “almost trivial”.

Theorem (Wu and Zubkov)

Suppose that F is an extended ∅′-limitwise monotonic function and that the

linear ordering L '
∑
q∈Q

F (q) has no dense intervals. Then L has a computable

copy with only almost trivial Π1-automorphisms.

I This generalizes Harris-Lee-Cooper’s result, and covers some instances of
Downey-Moses’ result.



Almost trivial automorphisms

An automorphism f of a linear ordering L = (L,≤) is almost trivial if

(∀x)
[
|[x ]L| > 1 → f ([x ]L) = [x ]L

]
.

I For discrete linear orderings, there is no difference between “fairly trivial”
and “almost trivial”.

Theorem (Wu and Zubkov)

Suppose that F is an extended ∅′-limitwise monotonic function and that the

linear ordering L '
∑
q∈Q

F (q) has no dense intervals. Then L has a computable

copy with only almost trivial Π1-automorphisms.

I This generalizes Harris-Lee-Cooper’s result, and covers some instances of
Downey-Moses’ result.



Almost trivial automorphisms

An automorphism f of a linear ordering L = (L,≤) is almost trivial if

(∀x)
[
|[x ]L| > 1 → f ([x ]L) = [x ]L

]
.

I For discrete linear orderings, there is no difference between “fairly trivial”
and “almost trivial”.

Theorem (Wu and Zubkov)

Suppose that F is an extended ∅′-limitwise monotonic function and that the

linear ordering L '
∑
q∈Q

F (q) has no dense intervals. Then L has a computable

copy with only almost trivial Π1-automorphisms.

I This generalizes Harris-Lee-Cooper’s result, and covers some instances of
Downey-Moses’ result.



Thanks!


