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Background project (joint with Walter Dean)
Goal: to rehabilitate a form of construction-based semantics for
inutitionistic logic and mathematics known as the Theory of
Constructions [ToC] originally proposed by Kreisel (1962) and
Goodman (1968).

1) Provide a construction-based system in which Heyting
Predicate Calculus [HPC] can be interpreted (T0).

2) Extend T0 to T1 in which Heyting Arithmetic [HA] can be
interpreted.

3) Extend this to HAω and reprove Goodman’s Theorem:

HAω +AC is conservative over HA.

4) Proceed in a manner which is compatible with several adequacy
conditions on the proper analysis of “constructive validity”.

This is a report of this on-going project.
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Kreisel’s program

Our main purpose here is to enlarge the stock of formal rules of proof
which follow directly from the meaning of the basic intuitionistic
notions but not from the principles of classical mathematics so far
formulated. The specific problem which we have chosen to lead us to
these rules is also of independent interest: to set up a formal system,
called [the] ‘abstract theory of constructions’ for the basic notions
mentioned above, in terms of which formal rules of Heyting’s
predicate calculus can be interpreted.

In other words, we give a formal semantic foundation for intuitionistic

formal systems in terms of the abstract theory of constructions. This

is analogous to the semantic foundation for classical systems Tarski

(1935) in terms of abstract set theory.

Kreisel (1962) “Foundations of intuitionistic logic”
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Outline

I) The intended (i.e. BHK) interpretation and the analysis of
“constructive validity”.

II) The Kreisel-Goodman programme:
I language: the proof predicate πst
I rules about proofs: decidability, internalization, reflection
I the Kreisel-Goodman paradox
I responding to the paradox

III) Rehabilitating the programme:
I interpreting HPC: impredicativity & the second clause
I soundness
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Intuitionistic implication in BHK

The implication A → B can be asserted, if and only if we possess a

construction r, which, joined to any construction proving A

(presuming that the latter be effected), would automatically effect a

construction proving B. Heyting (1956)

Naive observations:

1) The original formulations do treat constructions as “first class
objects” (e.g. by quantifying over them).

2) But they do not (at least explicitly) mention type distinctions.
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The Troelstra & van Dalen [1988] formulation of BHK
(P⊥) ⊥ has no proof.
(P∧) A proof of A ∧B consists of a proof of A and a proof of B.

(P∨) A proof of A ∨B consists of a proof of A or a proof of B.

(P→) A proof of A → B consists of a construction which transforms
any proof of A into a proof of B.∗

(P¬) A proof of ¬A consists of a construction which transforms any
hypothetical proof of A into a proof of ⊥.∗

(P∀) A proof of ∀xA consists of a construction which transforms all
c in the intended range of quantification into a proof of A(c).∗

(P∃) A proof of ∃xA consists of an object c in the intended range
of quantification together with a proof of A(c).

∗ In (e.g.) Troelstra (1977) and van Dalen (1973), “K” stands for

“Kreisel” and there are second clauses for →,¬, and ∀.
6/28



BHK & Constructive validity An overview of ToC The paradox Interpreting HPC

Construction-based semantics

The reason that A is intuitionistically (constructively, if you prefer)

valid is that there is a specific term t such that ` t ∈ A is provable in

the theory of constructions. Scott (1970) “Constructive Validity”

I Goal: treating constructions s, t, u, . . . as primitives, analyze
the BHK clauses so as to prove

HPC ` A if and only if ` Pr(A, t)

for some t which is a formal term of the theory and

Pr(A, t) formalizes t satisfies the BHK proof conditions of A.

I Goodman (1970)’s goal: provide a “type- and logic-free”
foundation for intuitionistic logic and mathematics.
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Brouwer-Heyting-Kreisel interpretation

The Kreisel (1962) proposal:

(K∧) Π(A ∧ B, s) := λ~x.(Π(A,D1s) ∩k Π(B,D2s))

(K→) Π(A → B, s) := π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

Compare: Π(A → B, s) := λ~x.λy.(Π(A, y) ⊃k Π(B, sy))

The clause (K→) formalizes

s = 〈s1, s2〉 is a proof A → B just in case s1 is a proof that
for all y, if Π(A, y), then Π(B, s2y)

I The requirement on s1 is the“second clause” added to
ensure the decidability of K→, K¬, and K∀.

I Why worry about decidability? To ensure that the proof
conditions of →, ¬, ∀ do not quantify over “all proofs” in a
impredicative/circular manner. 8/28
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Gödel on BHK

[The Heyting interpretation does] violate the principle . . . that the
word “any” can be applied only to those totalities for which we have a
finite procedure for generating all their elements. For the totality of
all possible proofs certainly does not possess this character, and
nevertheless the word “any” is applied to this totality in Heyting’s
axioms, as you can see from the example which I mentioned before,
which reads: “Given any proof for a proposition p, you can construct
a reductio ad absurdum for the proposition ¬p”. Totalities whose
elements cannot be generated by a well-defined procedure are in some
sense vague and indefinite as to their borders. And this objection
applied particularly to the totality of intuitionistic proofs because of
the vagueness of the notion of constructivity.

Gödel (1933) “The present situation in the foundations of mathematics”
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Red herrings?

Goodman (1968)’s main result is “Goodman’s theorem”:

HAω +AC is conservative over HAω (and hence HA).

But ToC has been dismissed for several reasons – e.g.:

1) a paradox (Kreisel-Goodman paradox)
I due to “reflection principle” (provability implies truth).
I due to “the second clause” ? (Weinstein (1983). But we claim

“No.”)

2) Goodman’s unmotivated solutions (stratification of the domain
of proofs)

However:

I For some theoretical purposes, “reflection” is not used.
I Then no worries about the Paradox and stratification
I The second clause makes some sense to make sure

“decidability” 10/28
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The theory T ∗: syntax

We will first present an inconsistent theory T ∗ similar to that of Kreisel

(1962) before isolating a consistent subtheory T0 ⊆ T ∗.

I Terms:
s := x, y, z . . . | > | ⊥ | cp | Dtu | D1t | D2t | λx.t | tu | πut
>,⊥ (truth values), D (pairing), D1, D2 (projection)

I Following Curry and Feys (1958), Goodman took D,D1, D2

as primitives. But we don’t have to:
D =df λx.λy.λz.zxy, D1 =df λp.p>, D2 =df λp.p⊥

I Formulas: s ≡ t

I Since T ∗ is based on the untyped lambda calculus, terms
need not always be defined (i.e. reduce to a normal form).
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The theory T ∗: axioms, sequents, rules

I T ∗ is a single conclusion sequent calculus consisting of

1) structural rules: weakening, substitution
2) the equational theory of λβη-equality (cf. [Hindley, 1986])
3) special axioms and rules about π

I Sequents: ∆ ` s ≡ t

I Intended interpretation:

πst ≡ > iff t is a constructive proof of s ≡ >
I Special rules about π:

(Dec)

∆, πuv ≡ ⊥ ` s ≡ t ∆, πuv ≡ > ` s ≡ t

∆ ` s ≡ t

(ExpRfn) ∆, πst ≡ > ` s ≡ >
(Int) ` s ≡ > with derivation p, then ` πscp ≡ >
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Motivating the rules: Dec

∆, πuv ≡ ⊥ ` s ≡ t ∆, πuv ≡ > ` s ≡ t

∆ ` s ≡ t

I Dec is intended to formalize that πst ≡ > is decidable.

I Reconstructing Kreisel’s motivation:
I Kreisel (1965): “we recognize a proof when we see one”

I Analogy with T ` ProofT(n, pAq) or T ` ¬ProofT(n, pAq)
since ProofT(x, y) is a ∆0

1-formula.

I The goal is to define Π(A, s) in terms of π so that that it too
is decidable in the sense of Dec.

I NB: what Dec really formalizes is that πst may be assumed
to be always defined and equal to > or ⊥.
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Motivating the rules: Int

` s ≡ > with derivation p, then ` πscp ≡ >

I Int is a form of internalization principle – i.e. if s is provable,
then we can “internalize” its derivation within T ∗.

I Arithmetical analogue:

(HB1) If ` A, then exists n ∈ N s.t. ` ProofT(n, pAq)

I Status:
I This is an again intuitively plausible principle about

constructive provability.
I But the reason K & G included it appears to have been

intrustrumental – i.e. it’s needed to secure the decidability of
the proof condition for A → B.
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On the rule ExpRfn

πst ≡ > ` s ≡ >

I ExpRfn is a form of reflection principle – i.e. if s is proven
by t, then s is true.

I Kreisel (1962): “intuitively obvious on the intended
interpretation”

I Arithmetical analogy

Rfn(T) ProofT(x, pAq) → A

I ExpRfn also isn’t needed to prove the soundness of
Goodman’s interpretation of HPC or HA.

I Note that ExpRfn is formulated in the interpreting theory,
and there is no way of expressing reflection via Π.
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Background for the Kreisel-Goodman paradox

I Goodman (1970) sketched a derivation of a contradiction in
T ∗ which resembles Montague (1963)’s paradox :

I self-reference (e.g. T ⊇ Q satisfies the Diagonal Lemma)
I a “provability like” predicate P (x)

(Rfn) P (pAq) → A (reflection)
(Nec) ` A ∴ ` P (pAq) (necessitation)

I In T ∗ we get self-reference via fixed-point combinators – e.g.

Y =df λt.(λx.t(xx))(λx.t(xx))

is s.t. ` Y t ≡ t(Y t).

I A term which is “equivalent to is own unprovability”
I Let h(y, x) =df λy.λx.(πyx ⊃1 ⊥).
I Then ` Y (h(y, x)) ≡ h(Y (h(y, x)), x).
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Derivations

Montague (1963) ≈ Goodman (1970)
` D ↔ ¬P (pDq) ` Y (h(y, x)) ≡ h(Y (h(y, x)), x) FP
` P (pDq) → D π(Y (h(y, x)))x ≡ > ` Y (h(y, x)) ≡ > ExpRfn

π(Y (h(y, x)))x ≡ > ` h(Y (h(y, x)), x) ≡ >
π(Y (h(y, x)))x ≡ > ` (π(Y (h(y, x)))x ⊃1 ⊥) ≡ >
π(Y (h(y, x)))x ≡ > ` ⊥ ≡ >

` ¬P (pDq) ` π(Y (h(y, x)))x ≡ ⊥ Dec
` (π(Y (h(y, x)))x ⊃1 ⊥) ≡ >
` h(Y (h(y, x)), x) ≡ >

` D ` Y (h(y, x)) ≡ >
` P (pDq) ` π(Y (h(y, x)))cp ≡ > Int

` π(Y (h(y, x)))cp ≡ ⊥ subst
` ⊥ ` > ≡ ⊥
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The theory T0
Out view: the paradox has nothing to do with “the second clause.”

I Goal: to isolate a sub-theory T0 of T ∗ s.t.
I consistent
I unstratified (and hence more “type- and logic-free”)
I can be used to interpret the BHK clauses such that soundness

and completeness of HPC are provable

I Proposal: Reflection isn’t used in Goodman’s original
interpretation of HPC in T ∗. So we consider the system
T0 = T ∗ −ExpRfnR.

I Other options are available:
I Prohibit the application Int to consequences of ExpRfn.
I A finer grained treatment of internalization resembling

“lifting” in the sense of Artemov (2001)’s LP.
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The mapping Π(A, x)

We want to define a mapping

Π : FormHPC × TermT0 → TermT0

s.t. Π(A, s) ≡ > expresses “s is a proof of A” à la BHK and is a
decidable predicate.

I Straightforward in the case of ∧ , ∨ ,∃.
I Trickier in the case of → in virtue of the putative

impredicativity of (P→) – e.g.

Pr(A → B, t) iff for all proof s, if Pr(A, s), then Pr(B, t(s))

I This seems analogous to a Π0
1 statement about N – i.e

a priori undecidable.
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Interpreting the propositional calculus in T0

I The Church interpretation of the classical connectives in the
untyped lambda calculus:

> = λx.λy.x ⊥ = λx.λy.y
∩ = λa.λb.a(b⊥) ∪ = λa.λb.a(>b)
⊃ = λa.λb.a(b>) ∼ = λa.a(⊥>)

I E.g. ` ⊥ ∪ > ≡ (λa.λb.a(>b))(λx.λy.y)(λx.λy.x) ≡
(λb.((λx.λy.y)(>b))((λx.λy.x) ≡ (λx.λy.y)(>(λx.λy.x)) ≡
λx.λy.x =df >
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The Brouwer-Heyting-Kreisel interpretation
The Kreisel (1962) proposal:

(K∧) Π(A ∧ B, s) := λ~x.(Π(A,D1s) ∩k Π(B,D2s))

(K∨) Π(A ∨ B, s) := λ~x.(Π(A,D1s) ∪k Π(B,D2s))

(K→) Π(A → B, s) := π(λy.(Π(A, y) ⊃k Π(B, (D2s)y)), D1s)

(K¬) Π(¬A, s) := λ~x.π(λy.(Π(A, y) ⊃k Π(⊥, (D2s)y)), D1s)

(K∀) Π(∀zA(z), s) := λ~x.π(λy.Π(A[y/z], (D2s)y), D1s)

(K∃) Π(∃zA(z), s) := λ~x.Π(A[(D2s)/z], D1s)

The clause (K→) formalizes

s = 〈s1, s2〉 is a proof A → B just in case s1 is a proof that
for all y, if Π(A, y), then Π(B, s2y)

The requirement on s1 is the“second clause” added to ensure the
decidability of K→, K¬, and K∀.
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Formulating soundness and completeness

K & G both state versions of the following (K w/o proof):

Theorem HPC ` A iff there is a term t s.t. T ` Π(A, t) ≡ >.

I Our claim: The RHS gives an analysis of constructive validity
using ToC à la Scott (1970).

I The L-to-R direction expresses a form of soundness – i.e.

if HPC ` A, then |=i A.

I The R-to-L direction expresses a form of completeness – i.e.

if |=i A, then HPC ` A.

I Our goal is to prove these results for T = T0.
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Soundness (1)

I We show by induction on HPC derivations that

HPC ` A ⇒ T0 ` Π(A, t)

I E.g. some axioms:
I For A → A, we may take t = Dcp(λx.x) where p is a proof of

(Π(A, x) ⊃ Π(A, x)) ≡ >.
I For (A ∧ B) → A, we may take t = Dcp(λx.D1x)

I For modus ponens we have

If ` Π(A → B, s) ≡ > and ` Π(A, t) ≡ >,
then ` Π(B,D2st) ≡ >.

I So just like Curry-Howard:
I modus ponens ∼ β-conversion
I deduction theorem ∼ λ-abstraction
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Soundness (2): An observation on a “deduction theorem.”

Suppose that x does not occur in ∆ and

∆,Π(A, x) ≡ > ` Π(B, s) ≡ >

Then ∆ ` Π(A → B, t) for some term t.

Proof: The hypotheses imply ∆,Π(A, x) ≡ > ` Π(B, λx.s′x) ≡ > (for
some s′) and thus since Π(A, x) is decidable, we have by the truth
functional Deduction Theorem that

∆ ` (Π(A, x) ⊃ Π(B, λx.s′x)) ≡ >

By applying the rule Int there is hence a term cp such that

∆ ` π((Π(A, x) ⊃ Π(B, λx.s′x)), cp) ≡ >

So we may take t = Dcp(λx.s
′) as the term s.t. ∆ ` Π(A → B, t) ≡ >.
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Consistency

Before proving the soundness of the “Kreisel interpretation” of HPC, we
must show that the revised system T0 is consistent.

Outline of a consistency proof of ToC, i.e. T0, à la Goodman (1968).

1) Define a “deterministic” reduction relation for terms of ToC

2) Define a notion of satisfaction and validity.

I t ≡ s is satisfiable with respect to a sequence giving a
substitution of a free variable with reduced terms if t and s
reduced to the same term.

I t ≡ s is valid if it is satisfiable with respect to every such
sequence.

3) Show that all sequents ∆ ` t ≡ s derivable in T0 are valid.

4) Observe that (e.g.) λxy.x ≡ λxyz.xz(yz) is not valid.

We have yet to fill out some “gaps” that Goodman left in his text.
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