Cofinality of classes of ideals with respect to Katětov and Katětov-Blass orders

Hiroshi Sakai (joint with Hiroaki Minami)

Kobe University

CTFM2015 September 11, 2015

Section 1

Ideals and Katětov(-Blass) order

・ロト ・回ト ・ヨト ・ヨト

Ideals over a countable set

Let X be a countable infinite set. We say that \mathcal{I} is an ideal over X if \mathcal{I} is a family of subsets of X such that • $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$.

- $A, B \in \mathcal{I} \Rightarrow A \cup B \in \mathcal{I}$.
- $X \notin \mathcal{I}$, • \mathcal{T} contains all finite subsets of X.
- An ideal over a countable set X can be identified with an ideal over ω . We mainly discuss ideals over ω .
- An ideal over a countable set X is a subset of $\mathcal{P}(X)$, and $\mathcal{P}(X)$ can be naturally identified with the Cantor space 2^{ω} .

An ideal \mathcal{I} over a countable set X is said to be $\Sigma_{\mathcal{E}}^0$, $\Pi_{\mathcal{E}}^0$, Borel, Σ_n^1 , Π_n^1 , ... if it is $\Sigma_{\varepsilon}^{0}, \Pi_{\varepsilon}^{0}$, Borel, $\Sigma_{n}^{1}, \Pi_{n}^{1}, \ldots$ as a subset of the Cantor space, respectively.

An ideal \mathcal{I} is called a *P*-ideal if for any $\{A_n \mid n < \omega\} \subseteq \mathcal{I}$ there is $A \in \mathcal{I}$ s.t. $A_n \subset^* A$, i.e. $A_n \setminus A$ is finite, for all $n < \omega$.

Some examples of ideals

- The family of all finite subsets of ω is a Σ₂⁰ P-ideal over ω. This ideal is denoted as FIN.
- **2** For a function $f: \omega \to \mathbb{R}_{\geq 0}$ with $\sum_{n \in \omega} f(n) = \infty$,

$$\mathcal{I}_f := \{A \subseteq \omega \mid \sum_{n \in A} f(n) < \infty\}$$

is a Σ_2^0 P-ideal over ω . \mathcal{I}_f is called a *summable ideal* corresponding to f. **3** The asymptotic density 0 ideal

$$\mathcal{Z}_0 := \left\{ A \subseteq \omega \left| \lim_{n \to \omega} \frac{|A \cap n|}{n} = 0 \right\} \right\}.$$

is a Π_3^0 P-ideal over ω .

The eventually different ideal

$$\mathcal{ED} := \{ A \subseteq \omega \times \omega \mid \exists m \in \omega \forall^{\infty} n, |A_{(n)}| < m \}$$

is a Σ_2^0 ideal over $\omega \times \omega$. $(A_{(n)} = \{k \mid (n, k) \in A\}.)$

Orders on ideals

Let X, Y be ctble. infinite sets, and let \mathcal{I}, \mathcal{J} be ideals over X, Y, respectively.

- (Rudin-Keisler order) $\mathcal{I} \leq_{\mathrm{RK}} \mathcal{J}$ if there is $f : Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}$.
- (Rudin-Blass order) $\mathcal{I} \leq_{\mathrm{RB}} \mathcal{J}$ if there is a finite to one $f: Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Leftrightarrow f^{-1}[A] \in \mathcal{J}$.
- (Katětov order) $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ if there is $f : Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.
- (Katětov-Blass order) $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$ if there is a finite to one $f : Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

$$\begin{array}{cccc} \mathcal{I} \leq_{\mathrm{RB}} \mathcal{J} & \Longrightarrow & \mathcal{I} \leq_{\mathrm{RK}} \mathcal{J} \\ & \downarrow & & \downarrow \\ \mathcal{I} \leq_{\mathrm{KB}} \mathcal{J} & \Longrightarrow & \mathcal{I} \leq_{\mathrm{K}} \mathcal{J} \end{array}$$

(日) (同) (三) (三)

Facts on Katětov and Katětov-Blass orders

- If $\mathcal{I} \subseteq \mathcal{J}$ are ideals over X, then id_X witnesses that $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$.
- Many properties of ideals (or filters) can be characterized by the Katětov(-Blass) order and some Borel ideals. For example:
 - An ultrafilter \mathcal{F} over ω is selective iff $\mathcal{ED} \not\leq_{\mathrm{K}} \mathcal{F}^*$.
 - An ultrafilter \mathcal{F} over ω is P-point iff $FIN \times FIN \not\leq_K \mathcal{F}^*$.
 - An ultrafilter \mathcal{F} over ω is Q-point iff $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{F}^*$.
 - (Solecki) An ideal \mathcal{I} over ω has the Fubini property iff $S \not\leq_{\mathrm{K}} \mathcal{I} \upharpoonright X$ for any \mathcal{I} -positive X.
- The Katětov order on Borel ideals is complicated:

Theorem (Meza) $(\mathcal{P}(\omega)/\text{FIN}, \subseteq^*)$ can be embeddable into (Borel ideals, \leq_K).

Less is known about the structure of the Katětov and the Katětov-Blass orders on Borel ideals. In this talk we discuss these orders on the following classes of ideals:

- Σ_2^0 ideals \cdots the family of all Σ_2^0 ideals.
- Borel ideals \cdots the family of all Borel ideals over ω .
- Σ_1^1 ideals \cdots the family of all Σ_1^1 ideals.
- Σ_1^1 P-ideals \cdots the family of all Σ_1^1 P-ideals.

Fact

O There is no Π⁰₂ ideal. So Σ⁰₂ ideals are the class of the simplest ideals.
O (Solecki) Every Σ¹₁ P-ideal is Π⁰₃.

 $\boldsymbol{\Sigma}_2^0 \text{ ideals}, \ \boldsymbol{\Sigma}_1^1 \text{ P-ideals} \ \subsetneq \ \text{Borel ideals} \ \subsetneq \ \boldsymbol{\Sigma}_1^1 \text{ ideals}$

We will show that all of these classes are upward directed and discuss their cofinal types.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Section 2

Directedness

Directedness

Theorem

 $\pmb{\Sigma}_2^0$ ideals, $\pmb{\Sigma}_1^1$ P-ideals, Borel ideals and $\pmb{\Sigma}_1^1$ ideals are all upward directed with respect to $\leq_{\rm KB}$. (So they are upward directed w.r.t. $\leq_{\rm K}$, too.)

We give an outline of the proof.

Recall \mathcal{I} : an ideal over X, \mathcal{J} : an ideal over Y.• (Katětov order) $\mathcal{I} \leq_{\mathrm{K}} \mathcal{J}$ if there is $f: Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.• (Katětov-Blass order) $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$ if there is a finite to one $f: Y \to X$ such that for any $A \subseteq X$, $A \in \mathcal{I} \Rightarrow f^{-1}[A] \in \mathcal{J}$.

<ロ> (日) (日) (日) (日) (日)

$\mathbf{\Sigma}_1^1$ ideals

First we show the directedness of Σ_1^1 ideals.

Before proving the directedness w.r.t. $\leq_{\rm KB}$, we observe the directedness w.r.t. $\leq_{\rm K}$:

- Suppose \mathcal{I}_0 and \mathcal{I}_1 are $\boldsymbol{\Sigma}_1^1$.
- For k = 0, 1 let $\pi_k : \omega \times \omega \to \omega$ be the k-th projection, i.e. $\pi_k(n_0, n_1) = n_k$. Let

 $\mathcal{J} := \{ B \subseteq \omega \times \omega \mid \exists A_0 \in \mathcal{I}_0 \exists A_1 \in \mathcal{I}_1, \ B \subseteq \pi_0^{-1}[A_0] \cup \pi_1^{-1}[A_1] \} .$

• It is easy to check that \mathcal{J} is a Σ_1^1 ideal over $\omega \times \omega$. Moreover π_k witnesses that $\mathcal{I}_k \leq_{\mathrm{K}} \mathcal{J}$ for each k = 0, 1.

Note that π_k is not finite to one. So this does not give the directedness w.r.t. $\leq_{\rm KB}$.

<ロ> (日) (日) (日) (日) (日)

For the directedness of $\mathbf{\Sigma}_1^1$ ideals w.r.t. \leq_{KB} , we use the following:

Theorem (Mathias)

For any Σ_1^1 ideal \mathcal{I} over ω it holds that FIN $\leq_{\text{RB}} \mathcal{I}$, that is, there is a finite to one $f : \omega \to \omega$ such that $f^{-1}[C] \in \mathcal{I}$ iff C is finite.

Suppose \mathcal{I} is a $\mathbf{\Sigma}_1^1$ ideal, and let $f: \omega \to \omega$ be as above.

Let $\langle k_m \mid m \in \omega \rangle$ be the increasing enumeration of the range of f, and let $X_m := f^{-1}(k_m)$. Then

- $\langle X_m \mid m \in \omega \rangle$ is a partition of ω into finite sets,
- For any $A \in \mathcal{I}$ the set $M = \{m \mid X_m \subseteq A\}$ is finite.

(Otherwise, $C = \{k_m \mid m \in M\}$ is infinite, but $f^{-1}[C] = \bigcup_{m \in M} X_m \subseteq A \in \mathcal{I}.$)

・ロト ・四ト ・ヨト ・ヨト

Directedness of Σ_1^1 ideals w.r.t. $\leq_{\rm KB}$

• Suppose \mathcal{I}_0 and \mathcal{I}_1 are $\boldsymbol{\Sigma}_1^1$ ideals over ω .

- For k = 0, 1 let ⟨X^k_m | m < ω⟩ be a partition of ω into finite sets such that for any A ∈ I_k there are at most finitely many m with X_m ⊆ A.
- Let $X := \bigcup_{m \in \omega} X_m^0 \times X_m^1 \subseteq \omega \times \omega$. Let $\pi_k : X \to \omega$ be the k-th projection. Note that π_k is finite to one.
- Let $\mathcal{J} := \{ B \subseteq X \mid \exists A_0 \in \mathcal{I}_0 \exists A_1 \in \mathcal{I}_1, \ B \subseteq \pi_0^{-1}[A_0] \cup \pi_1^{-1}[A_1] \}.$
- \mathcal{J} is a Σ_1^1 ideal over X. <u>Proof of $X \notin \mathcal{J}$ </u> Suppose $A_0 \in \mathcal{I}_0$ and $A_1 \in \mathcal{I}_1$. There is $m \in \omega$ s.t. $X_m^0 \not\subseteq A_0$ and $X_m^1 \not\subseteq A_1$. Then $X_m^0 \times X_m^1 \not\subseteq \pi_0^{-1}[A_0] \cup \pi_1^{-1}[A_1]$. So $X \not\subseteq \pi_0^{-1}[A_0] \cup \pi_1^{-1}[A_1]$.
- Clearly π_k witnesses that $\mathcal{I}_k \leq_{\mathrm{KB}} \mathcal{J}$ for each k = 0, 1.

$\boldsymbol{\Sigma}_2^0$ ideals

In the proof for Σ_1^1 ideals, if \mathcal{I}_0 and \mathcal{I}_1 are Σ_2^0 , then so is \mathcal{J} . This follows from the compactness of the Cantor space. (Continuous images of Σ_2^0 sets are Σ_2^0 .)

 $\mathbf{\Sigma}_1^1$ P-ideals

In the proof for Σ_1^1 ideals, if \mathcal{I}_0 and \mathcal{I}_1 are P-ideals, then so is \mathcal{J} .

Borel ideals

Borel ideals are cofinal in Σ_1^1 ideals w.r.t. \leq_{KB} by the following fact:

Fact (folklore)

For any Σ_1^1 ideal \mathcal{I} there is a Borel ideal \mathcal{J} with $\mathcal{I} \subseteq \mathcal{J}$.

I do not know whether other classes are directed:

Qestion For $\alpha > 2$, are Σ_{α}^{0} ideals directed with respect to \leq_{KB} (or \leq_{K})?

<ロ> (日) (日) (日) (日) (日)

Section 3

Cofinal types

・ロト ・回ト ・ヨト ・ヨト

Tukey order

Let $\mathcal{D} = (D, \leq_D)$ and $\mathcal{E} = (E, \leq_E)$ be (upward) directed sets.

- $\mathcal{D} \leq_{\mathrm{T}} \mathcal{E}$ if there is a function $f : E \to D$ such that images of cofinal subsets of \mathcal{E} are cofinal in \mathcal{D} .
- $\mathcal{D} \equiv_{\mathrm{T}} \mathcal{E}$ if $\mathcal{D} \leq_{\mathrm{T}} \mathcal{E}$, and $\mathcal{E} \leq_{\mathrm{T}} \mathcal{D}$.

If $\mathcal{D}\equiv_{T} \mathcal{E}$, then we say that the cofinal types of \mathcal{D} and \mathcal{E} are the same.

• $\mathcal{D} \leq_{\mathrm{T}} \mathcal{E}$ iff there is a function $g : D \to E$ such that images of unbounded subsets of \mathcal{D} are unbounded in \mathcal{E} .

For a directed set $\mathcal{D} = (D, \leq_D)$ let

 $\begin{aligned} &\operatorname{cof}(\mathcal{D}) &:= \min\{|A| \mid A \text{ is a cofinal subset of } \mathcal{D}\}, \\ &\operatorname{ubdd}(\mathcal{D}) &:= \min\{|A| \mid A \text{ is an unbounded subset of } \mathcal{D}\}. \end{aligned}$

• If $\mathcal{D} \equiv_{\mathrm{T}} \mathcal{E}$, then $\operatorname{cof}(\mathcal{D}) = \operatorname{cof}(\mathcal{E})$, and $\operatorname{ubdd}(\mathcal{D}) = \operatorname{ubdd}(\mathcal{E})$.

<ロ> (四) (四) (三) (三) (三) (三)

Cofinal types of Σ_2^0 ideals and Σ_1^1 P-ideals

It is known, due to Mazur and Solecki, that Σ_2^0 ideals and Σ_1^1 P-ideals have nice characterizations using lower semi-continuous submeasures. Using these characterizations, we can prove the following:

Theorem (Minami-S.)

$$\textcircled{0} \hspace{0.1in} (\boldsymbol{\Sigma}_2^0 \hspace{0.1in} \mathsf{ideals}, \leq_{\mathrm{K}}) \hspace{0.1in} \equiv_{\mathrm{T}} \hspace{0.1in} (\boldsymbol{\Sigma}_2^0 \hspace{0.1in} \mathsf{ideals}, \leq_{\mathrm{KB}}) \hspace{0.1in} \equiv_{\mathrm{T}} \hspace{0.1in} (\omega^{\omega}, \leq^{*}),$$

where for $f,g \in \omega^{\omega}$, $f \leq^* g$ if $f(n) \leq g(n)$ for all but finitely many $n \in \omega$.

2 The family of all summable ideals are unbounded in (Σ_2^0 ideals, \leq_{KB}).

Corollary (Minami-S.)

•
$$\operatorname{cof}(\boldsymbol{\Sigma}_2^0 \text{ ideals}, \leq_{\mathrm{K}}) = \operatorname{cof}(\boldsymbol{\Sigma}_2^0 \text{ ideals}, \leq_{\mathrm{KB}}) = \mathfrak{d}.$$

• $\mathrm{ubdd}(\boldsymbol{\Sigma}_2^0 \text{ ideals}, \leq_{\mathrm{K}}) = \mathrm{ubdd}(\boldsymbol{\Sigma}_2^0 \text{ ideals}, \leq_{\mathrm{KB}}) = \mathfrak{b}.$

Theorem (Minami-S.)

 $(\mathbf{\Sigma}_1^1 \text{ P-ideals}, \leq_{\mathrm{KB}})$ has the greatest element. (Hence so does $(\mathbf{\Sigma}_1^1 \text{ P-ideals}, \leq_{\mathrm{K}})$.)

Characterizations by lower semi-continuous submeasures

A lower semi-continuous submeasure (l.s.c.s.) on ω is a function $\varphi : \mathcal{P}(\omega) \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ such that

- $\varphi(\emptyset) = 0$,
- $A \subseteq B \Rightarrow \varphi(A) \leq \varphi(B)$,
- $\varphi(A \cup B) \leq \varphi(A) + \varphi(B)$,
- $\varphi(A) = \lim_{n \to \omega} \varphi(A \cap n)$. (Lower semi-continuity)

Fact (1: Mazur, 2: Solecki)

() \mathcal{I} is a Σ_2^0 ideal over ω iff there is a l.s.c.s. φ with $\varphi(\omega) = \infty$ s.t.

$$\mathcal{I} = \{A \subseteq \omega \mid \varphi(A) < \infty\}.$$

2 \mathcal{I} is a Σ_1^1 P-ideal over ω iff there is a l.s.c.s. φ with $\lim_{n\to\omega} \varphi(\omega \setminus n) > 0$ s.t.

$$\mathcal{I} = \{A \subseteq \omega \mid \lim_{n \to \omega} \varphi(A \setminus n) = 0\}.$$

- Each l.s.c.s. can be seen as a limit of its finite initial segments, which are submeasures on finite sets. Moreover we may assume that finite initial segments take values in Q. (So the variation of finite initial segments are countable.)
- Between submeasures on finite sets we can define a directed order, which approximates the Katětov(-Blass) order between ideals obtained by l.s.c.s.'s

(日) (同) (三) (三)

Cofinal types of Borel ideals and Σ_1^1 ideals

- Because Borel ideals are cofinal in $\pmb{\Sigma}_1^1$ ideals w.r.t. \subseteq ,
 - (Borel ideals, \leq_{K}) \equiv_{T} (Σ_{1}^{1} ideals, \leq_{K}),
 - (Borel ideals, \leq_{KB}) \equiv_{T} (Σ_1^1 ideals, \leq_{KB}),

I do not know the cofinal types of them.

- It is known that these do not have the greatest element.
- If the following question is true, then the cofinal type of these are the same as ($\omega_1, <$):

Question

For any $\alpha < \omega_1$ are $\boldsymbol{\Sigma}^0_{\alpha}$ ideals bounded in (Borel ideals, \leq_{KB})?

• The above question is true for $\alpha = 2$:

Using the characterization by l.s.c.s., it can be proved that for any Σ_2^0 ideal \mathcal{I} there is a Σ_1^1 P-ideal \mathcal{J} with $\mathcal{I} \subseteq \mathcal{J}$ (so $\mathcal{I} \leq_{\mathrm{KB}} \mathcal{J}$). Then the greatest element of (Σ_1^1 P-ideals, \leq_{KB}) is an upper bound of Σ_2^0 ideals w.r.t. \leq_{KB} .