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Models of set theory under embeddability

Consider the models of set theory under embeddability.

One model embeds into another, written M ⊂∼ N, if there is

j : M → N for which

x ∈M y ←→ j(x) ∈N j(y).

In other words, 〈M,∈M〉 is isomorphic to a substructure of
〈N,∈N〉.
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Incomparable models of set theory

It is extremely natural to inquire:

Question (Ewan Delanoy)

Exhibit two incomparable countable models of set theory,
models that do not embed into each other.

M 6⊂∼ N 6⊂∼ M

The question was asked on math.SE, and several users posted
suggested solutions.
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Exhibiting incomparable models
There was an obvious strategy for producing incomparable
models.

Let M be a tall thin model, and let M be a short, fat model.

M

N

The idea was: M is too tall to embed into N. And N is too fat to
embed into M.

I tried hard to prove this, but could not make it work.

Eventually, I began to suspect that it just wasn’t true...
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Embeddability is linear

Main Theorem (Hamkins)

There are no incomparable countable models of set theory.
Given any 〈M,∈M〉 and 〈N,∈N〉, one of them embeds into the
other.

Thus, the countable models of set theory are linearly
pre-ordered by embeddability.

Indeed, they are pre-well-ordered by embeddability in order
type exactly ω1 + 1.

The proof proceeds from a graph-theoretic perspective, using
graph universality and thinking of the models of set theory as
acyclic directed graphs.
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Only the height matters

The proof shows that embeddability of models of set theory
reduces to the order-embeddability of their ordinals.

Theorem (Hamkins)

The following are equivalent for countable models of set theory.
1 〈M,∈M〉 embeds into 〈N,∈N〉.
2 The ordinals of M embed into the ordinals of N.

So the short fat model embeds into the tall thin model!

But also, any two countable models of set theory with the same
ordinals are bi-embeddable.
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Every model embeds into its own L

Theorem (Hamkins)

Every countable model of set theory 〈M,∈M〉 is isomorphic to a
submodel of its own constructible universe 〈LM ,∈M〉.

In other words, there is an embedding j : M → LM , for which

LM

j

M

x ∈ y ←→ j(x) ∈ j(y).
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Embedding into models of finite set theory

The embedding phenomenon arises even in finite set theory.
Recall Ackermann’s relation:

n E m iff nth binary bit of m is 1.

It is an elementary exercise to see that 〈N,E〉 ∼= 〈HF,∈〉.

Theorem (Ressayre 1983)

For any nonstandard model M |= PA and any consistent c.e.
set theory T ⊇ ZF, there is N ⊆ 〈HF,∈〉M with N |= T .

Thus, we find submodels of HFM that satisfy ZFC. Incredible!

Ressayre uses partial saturation and resplendency to find a
submodel of T .
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A strengthening of Ressayre

Theorem (Hamkins)

If M is any nonstandard model of PA, then 〈HF,∈〉M is universal
for all countable acyclic binary relations.

In particular, every countable model of set theory is isomorphic
to a submodel of HFM .

Living inside HFM , we believe every set is finite—it is the land of
the finite—but by throwing some objects away, we arrive at a
model of ZFC with large cardinals...

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Universal structures
A structure M is universal for a class ∆ of structures, if every
structure in ∆ embeds into M.

For example, the rational order 〈Q, <〉 is universal for all
countable linear orders.

Q

L
q0q1 q2q3 q4q5

Enumerate the elements of your order L, and build the
embedding in stages.
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Universal partial order

Can we construct a computable universal partial order?

Sure, it’s easy...

Start with a single point.

Add new points relating to that point in all possible ways.

Keep doing that, adding finitely many points realizing types at
each stage.

The resulting order is universal, by the “forth” part of Cantor’s
back-and-forth method.

This construction produces a homogeneous model, one for
which finite partial automorphisms can always be extended.
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Countable random graph
For graphs, the construction produces the countable random
graph.

The countable random graph is characterized by the finite
pattern property: for any disjoint finite sets of nodes A, B, there
is a node a connected to every node in A and to none in B.

A similar construction works with directed graphs, producing the
countable random digraph, with a similar finite pattern property.
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Acyclic digraphs
A digraph is acyclic if it has no directed cycles.

(Every model of set theory 〈M,∈M〉 is an acyclic digraph.)

May we undertake an analogous construction to produce a
universal acyclic digraph?

No, the method doesn’t work. We can’t add new nodes in all
possible ways, since this will create cycles.

The basic problem is a failure of amalgamation. New nodes,
which are fine individually, cannot be amalgamated. The
method is attempting to construct a homogeneous model, and
there is no nontrivial homogeneous countable acyclic digraph.
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Graded digraphs
The situation is better for graded digraphs.

A digraph (G,⇀) is Q-graded, if there is a 7→ αa ∈ Q such that

a ⇀ b implies αa < αb.

More generally, a graded digraph is a digraph (G,⇀,≤)
accompanied by a linear pre-order ≤ on the nodes, such that
a ⇀ b implies a < b.

Every graded digraph is acyclic.
Conversely, every countable acyclic digraph (G,⇀) can be
Q-graded: the transitive closure of ⇀ is a partial order,
which extends to a linear order, which embeds into Q.
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The countable random Q-graded digraph
Theorem

There is a countable Q-graded homogeneous digraph Γ,
universal for all countable Q-graded digraphs. It is unique up to
isomorphism and has a computable presentation.

Plentiful proof for the existence of this highly canonical object:

1. Γ is the Fraïssé limit of the finite Q-graded digraphs.

2. Forcing construction: meet requirements (dense sets) to
ensure the corresponding finite pattern property.

3. Computable presentation, adding nodes of each possible
type at each stage, as before.

4. Probabilistic proof. Put infinitely many nodes with each
value; connect edges with probability 1

2 .
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Finite pattern property
The countable random Q-graded digraph is characterized by:

For any disjoint finite sets of nodes A,B,C, any value α
between A and B, there is a node v with:

• •

•
•

•
•

A

B

Cα ◦v

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Finite pattern property
The countable random Q-graded digraph is characterized by:

For any disjoint finite sets of nodes A,B,C, any value α
between A and B, there is a node v with:

• •

•
•

•
•

A

B

Cα ◦v

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Finite pattern property
The countable random Q-graded digraph is characterized by:

For any disjoint finite sets of nodes A,B,C, any value α
between A and B, there is a node v with:

• •

•
•

•
•

A

B

Cα ◦v

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Realizing graphs as sets
Lemma

Every finite acyclic digraph (G,⇀) is isomorphic to a
hereditarily finite set (A,∈).

Proof.

Like Mostowski collapse, but graph may not be extensional. Let

π(y) = {π(x) | x ⇀ y } ∪ {{∅, y}} ,

and then show

x ⇀ y ⇐⇒ π(x) ∈ π(y).

Actually, the proof works for well-founded acylic digraphs,
realizing them as sets.
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Proof of the embedding theorem
Theorem (Hamkins)

If M is any nonstandard model of PA, then every countable
model of set theory arises as a submodel of 〈HF,∈〉M . Indeed,
HFM is universal for all countable acyclic binary relations.

Proof.

Let M |= PA be nonstandard. Build the countable random
Q-graded digraph ΓM inside M. Let Γn be the nth approximation
for some nonstandard finite n. Since M thinks Γn is a finite
acyclic digraph, it thinks 〈Γn,⇀〉 ∼= 〈A,∈M〉 for some A ∈ HFM .
But since n is nonstandard, Γn includes the actual countable
random Q-graded digraph Γ, and so 〈A,∈M〉 is universal for all
countable acyclic binary relations.
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Surreal numbers
Construct the surreal numbers (Conway) by relentlessly,
transfinitely filling cuts in what has been constructed so far.

The basic idea goes back to Hausdorff, who constructed
saturated linear orders of arbitrarily large cardinality.

If A,B are sets of surreals already constructed, with A < B, then
{A | B } is the surreal number filling the cut between A and B.

Define order {XL | XR } = x ≤ y = {YL | YR } if no obstacle
prevents it, that is, 6 ∃xL ∈ XL (y ≤ xL) and 6 ∃yR ∈ YR (yR ≤ x).

Define equivalence x ' y ←→ x ≤ y ≤ x .

The class No of all surreals is homogeneous and universal for
all class linear orders.
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Hypnagogic digraph
Hypnagogic state: the dream-like sometimes hallucinatory state between sleeping and wakefulness.

Theorem

There is a surreals-graded class digraph 〈Hg,⇀〉 that is
homogeneous and universal for all graded class digraphs.

Proof.

• •

•
•

A

B

•{A | B }

Proof. Canonical representation. Use surreal
number numerals {A | B }, but do not quotient
by equivalence! Every node in A points at
{A | B }, and {A | B } points at every node
in B. Grading value of node {A | B } is its
surreal number value.
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Connection with models of set theory

Main idea: every model of set theory 〈M,∈M〉 is OrdM -graded
by von Neumann rank.

For any linear order `, the restriction Hg � ` is homogeneous
and universal for all `-graded digraphs.

Strategy: Given 〈M,∈M〉, look at (Hg � Ord)M , which is universal
for all OrdM -graded digraphs.

Problem: 〈Hg,⇀〉 is not set-like, and so the modified Mostowski
collapse lemma does not realize it in sets.

Worse: no model of ZFC has an Ord-graded set-like digraph
with finite pattern property.
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The main theorem
Main Theorem (Hamkins)

Every countable model of set theory 〈M,∈M〉 is universal for all
countable OrdM -graded digraphs.

Proof ideas. Fix cofinal λn ↗ OrdM . Let Γn = (Hg � λn + 1)
V M
λn+1 .

Define surrogate digraph Θ, nodes are 〈v0, . . . , vn〉, split parent and
child roles.

Γ0
Γ1

Γ2λ0

λ1

λ2

λ1 λ2 λ3

•

•

•
•

•

• •

• •

•
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Main theorem proof

The surrogate digraph Θ enjoys a surrogate finite-pattern
property, which ensures universality.

Furthermore, Θ =
⋃

n Θn is the union of set-like OrdM -graded
digraphs Θn, which are each realized as sets in M. The
surrogate relations ensure that nodes do not gain new children
as n increases, and so 〈Θ,�〉 ∼= 〈A,∈M〉 for some A ⊆ M.

Thus, 〈M,∈M〉 is universal for all countable OrdM -graded
digraphs, as desired.
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Conclusions

One countable model M embeds in another N just in case
OrdM ⊂∼ OrdN .

Countable models of set theory with the same ordinals are
bi-embeddable.
Every countable model of set theory M embeds into its
own constructible universe LM .
Countable nonstandard models of set theory are universal
and mutually biembeddable.
So there are ω1 + 1 many biembeddability classes for
countable models of set theory.
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Uncountable models

The embedding phenomenon fails for uncountable models.

Theorem (Fuchs, Gitman, Hamkins)

Assume that ZFC is consistent.
1 If ♦ holds, then there are 2ω1 many pairwise incomparable
ω1-like models of ZFC.

2 There is an ω1-like model M |= ZFC and an ω1-like model
N |= PA such that M does not embed into HFN .

3 Relative to a Mahlo cardinal, it is consistent that there is a
transitive ω1-like model M |= ZFC that does not embed into
its constructible universe LM .

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Internal embeddings

The main theorem showed that there are embeddings from any
countable model of set theory M to its own constructible
universe

j : M → LM

But can we find such embeddings j that are classes inside M?
In particular,

Question (Hamkins)

Can there be a class embedding j : V → L, if V 6= L?

This question is open, but we have some partial results.
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Every countable set embeds into L

Theorem (Hamkins)

Every countable set A embeds into L: j : A→ L

Proof.

Fix any countable A. Find ordinal θ with a grading function
r : A→ θ with a ∈ b → r(a) < r(b). In L, build a θ-graded
digraph 〈Γ,⇀, ρ〉 with the finite-pattern property. Modified
Mostowski collapse shows 〈Γ,⇀〉 ∼= 〈B,∈〉 some B ∈ L. But it is
also universal for all countable θ-graded digraphs. So
∃j : A→ B and hence j : A→ L, as desired.

This is true even when A /∈ L.
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On embeddings of V into L
In joint work with myself, Yair Hayut, Menachem Magidor, W.
Hugh Woodin, David Aspero:

Theorem

If there is j : V → L, then the GCH holds above ℵ0.

Theorem

If there is an embedding j : V → L, then 0] does not exist.

Theorem

If there is an embedding j : V → L, then the ground axiom
holds; that is, the universe was not obtained by (set) forcing.

Embeddability of models of set theory Joel David Hamkins, New York



Introduction Universal structures Surreal numbers & Hypnagogic digraph Proof of main theorem Further issues

Forcing embeddings

Theorem

There is a notion of forcing, such that in the forcing extension
V [G], there are new reals, as well as an embedding

j : P(ω)V [G] → P(ω)V .

We have a tentative argument for a similar phenomenon at
higher cardinals, assuming large cardinals.

The main question remains open: Is it possible that j : V → L
when V 6= L?
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Embeddings of V
The model-theoretic embedding concept is weaker than the
usual set-theoretic embedding concept. Compare with the
Kunen inconsistency:

Theorem

There is a nontrivial definable embedding j : V → V.

Proof.

Let
j(y) = { j(x) | x ∈ y } ∪ {{∅, y}} .

It is not difficult to prove x ∈ y ←→ j(x) ∈ j(y).

The Kunen inconsistency rules out nontrivial cofinal
∆0-elementary embeddings.
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A Mathematician’s year in Japan.
Joel David Hamkins
Available on Amazon.com

“Glimpse into the life of a professor
of logic as he fumbles his way through
Japan. A Mathematician’s Year in Japan
is a lighthearted, though at times emo-
tional account of how one mathematician
finds himself in a place where everything
seems unfamiliar, except his beloved
research on the nature of infinity, yet even
with that he experiences a crisis.”

Thank you. Slides available at http://jdh.hamkins.org.
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