Instant structures and categoricity

Keng Meng Ng

(joint work with Alexander Melnikov and Iskander Kalimullin)

Nanyang Technological University, Singapore

August 2015

- Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- Can formalize this more syntactically (reverse math, etc).
- Or more model theoretically...

< □ > < 同 > < 三 >

- Study how computation interacts with various mathematical concepts.
- Complexity of constructions and objects we use in mathematics (how to calibrate?)
- Can formalize this more syntactically (reverse math, etc).
- Or more model theoretically...

< □ > < 同 > < 回 >

- In computable model / structure theory, can different effective concepts
 - presentations of a structure,
 - complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply B = (dom(B), R^B, f^B, ···) such that B ≅ A.
- If A is countable and the language is computable, then this allows us to talk about deg(B).
- A countable A can have presentations of different Turing degrees, so it's not easy to define the "Turing degree" of a structure.

- In computable model / structure theory, can different effective concepts
 - presentations of a structure,
 - complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply B = (dom(B), R^B, f^B, ···) such that B ≅ A.
- If A is countable and the language is computable, then this allows us to talk about deg(B).
- A countable *A* can have presentations of different Turing degrees, so it's not easy to define the "Turing degree" of a structure.

- In computable model / structure theory, can different effective concepts
 - presentations of a structure,
 - complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply B = (dom(B), R^B, f^B, ···) such that B ≅ A.
- If A is countable and the language is computable, then this allows us to talk about deg(B).
- A countable A can have presentations of different Turing degrees, so it's not easy to define the "Turing degree" of a structure.

- In computable model / structure theory, can different effective concepts
 - presentations of a structure,
 - complexity of isomorphisms within an isomorphism type,
 - investigations can descend into a more degree-theoretic approach.
- For instance, classically, given any structure A, a *copy* or a *presentation* is simply B = (dom(B), R^B, f^B, ...) such that B ≅ A.
- If A is countable and the language is computable, then this allows us to talk about deg(B).
- A countable A can have presentations of different Turing degrees, so it's not easy to define the "Turing degree" of a structure.

э

 So one way of measuring precisely the complexity of a structure A is to look at

$$Spec(\mathcal{A}) = \{ deg(\mathcal{B}) \mid \mathcal{B} \cong \mathcal{A} \}.$$

- This gives a finer analysis (classically indistinguishable).
- Extensive study of degree spectra.
- Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≅ B are computable, they may have very different "hidden" effective properties.
- Standard example: $(\omega, <) \cong \mathcal{A}$ where you arrange for 2n and 2n + 2 to be adjacent in \mathcal{A} iff $n \in \emptyset'$.

 So one way of measuring precisely the complexity of a structure A is to look at

$$Spec(\mathcal{A}) = \{ deg(\mathcal{B}) \mid \mathcal{B} \cong \mathcal{A} \}.$$

- This gives a finer analysis (classically indistinguishable).
- Extensive study of degree spectra.
- Classically \mathcal{A} and \mathcal{B} are considered the same if $\mathcal{A} \cong \mathcal{B}$.
- However, from an effective point of view, even if A ≃ B are computable, they may have very different "hidden" effective properties.
- Standard example: $(\omega, <) \cong \mathcal{A}$ where you arrange for 2n and 2n + 2 to be adjacent in \mathcal{A} iff $n \in \emptyset'$.

- In the standard example (ω, <) ≅ A, "successivity" was the hidden property. Any isomorphism must transfer all definable properties, so this says that...
- This gives another way of defining precisely the complexity of a structure:

The degree of categoricity of A is the least degree **d** such that **d** computes an isomorphism between any two copies of A.

• Again, gives a finer analysis of classically indistinguishable concepts.

- In the standard example (ω, <) ≅ A, "successivity" was the hidden property. Any isomorphism must transfer all definable properties, so this says that...
- This gives another way of defining precisely the complexity of a structure:

The degree of categoricity of A is the least degree **d** such that **d** computes an isomorphism between any two copies of A.

Again, gives a finer analysis of classically indistinguishable concepts.

< ロト < 同ト < ヨト < ヨト -

• Often it is better to look at *computable* isomorphisms, i.e.

Definition

A computable structure \mathcal{A} is computably categorical if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable isomorphism between \mathcal{A} and \mathcal{B} .

 Aim of the project: Systematic approach to all these considerations, with even stricter / finer effective restrictions.

Definition (Mal'cev, Rabin, 60's)

A structure is computable if it has domain \mathbb{N} and all operations and relations are uniformly computable.

- Equivalent variations (allow domain to be computable or c.e.).
- Seen to unify all earlier effective algebraic concepts, e.g. explicitly presented fields, recursively presented group with solvable word problem, etc.
- This has grown since into a large body of research; groups, fields, Boolean algebras, linear orders, model theory, reverse mathematics.

< ロ > < 同 > < 三 >

• Our investigation is to place even finer restrictions: When does a computable structure have a feasible presentation?

- One way: structure presented by a *finite automaton* (won't discuss here).
- Another way: structure presented (as usual) by a Turing machine, but with restricted time complexity.
 - Most popular notion: polynomial time structures (Cenzer, Remmel, Downey).
 - Of course this depends on how the domain is represented (as N or 2^{<ω}).

• Our investigation is to place even finer restrictions: When does a computable structure have a feasible presentation?

- One way: structure presented by a *finite automaton* (won't discuss here).
- Another way: structure presented (as usual) by a Turing machine, but with restricted time complexity.
 - Most popular notion: polynomial time structures (Cenzer, Remmel, Downey).
 - Of course this depends on how the domain is represented (as N or 2^{<ω}).

< ロト < 同ト < ヨト

- Again, there's a large body of work (80's) done on polynomial time (mostly) algebras.
- Our starting point is a series of papers of Cenzer, Remmel (and other co-authors), on various classes of "feasible" structures.
- In computable structures we allow algorithms to be extremely inefficient.
- Sometimes, every computable structure has a polynomial-time copy:

Linear orders, certain kinds of BAs, some commutative groups. In many cases, proofs are focussed on first making structure "primitive recursive", then getting poly-time for free.

- Again, there's a large body of work (80's) done on polynomial time (mostly) algebras.
- Our starting point is a series of papers of Cenzer, Remmel (and other co-authors), on various classes of "feasible" structures.
- In computable structures we allow algorithms to be extremely inefficient.
- Sometimes, every computable structure has a polynomial-time copy:

Linear orders, certain kinds of BAs, some commutative groups. In many cases, proofs are focussed on first making structure "primitive recursive", then getting poly-time for free.

 In the negative direction, to show a structure has no polynomial time copy, it's easier to argue it has no primitive recursive copy.

Definition (Cenzer, Remmel)

A structure is primitive recursive if it's domain, operations and relations are all primitive recursive.

- Not that different from being computable: For instance, even if A has a primitive recursive copy, new elements can be enumerated very slowly.
- (Alaev) Every computable locally finite structure has a primitive recursive copy.

< ロト < 同ト < ヨト

 In the negative direction, to show a structure has no polynomial time copy, it's easier to argue it has no primitive recursive copy.

Definition (Cenzer, Remmel)

A structure is primitive recursive if it's domain, operations and relations are all primitive recursive.

- Not that different from being computable: For instance, even if A has a primitive recursive copy, new elements can be enumerated very slowly.
- (Alaev) Every computable locally finite structure has a primitive recursive copy.

< 同 > < ∃ >

 Instead, we will focus on structures with no possible way to delay revealing the structure:

Definition

A structure is instant if it has domain \mathbb{N} , and all operations and relations are primitive recursive (on \mathbb{N}).

- We only consider finite languages.
- Already used by Cenzer and Remmel as a technical tool.
- We will instead: systematic study of instant versus computable.
- Intuition: Instant structures have to decide right away what to do with the next element. (Cannot pass from subset to ℕ).

< 同 ト < 三 ト

 Instead, we will focus on structures with no possible way to delay revealing the structure:

Definition

A structure is instant if it has domain \mathbb{N} , and all operations and relations are primitive recursive (on \mathbb{N}).

- We only consider finite languages.
- Already used by Cenzer and Remmel as a technical tool.
- We will instead: systematic study of instant versus computable.
- Intuition: Instant structures have to decide right away what to do with the next element. (Cannot pass from subset to ℕ).

< D > < P > < P >

• We can place effectivity on math structures in two ways. In the same vein, we can ask:

Question (1)

When does a computable structure have an instant copy?

Question (2)

How many instant copies does an instant structure have, up to instant isomorphisms?

- We contrast to the computable case; often different, sometimes even unclear.
- Reveals how "reticent or forth-coming" a structure is.

・ロト ・ 同ト ・ ヨト・

• We can place effectivity on math structures in two ways. In the same vein, we can ask:

Question (1)

When does a computable structure have an instant copy?

Question (2)

How many instant copies does an instant structure have, up to instant isomorphisms?

- We contrast to the computable case; often different, sometimes even unclear.
- Reveals how "reticent or forth-coming" a structure is.

• We can place effectivity on math structures in two ways. In the same vein, we can ask:

Question (1)

When does a computable structure have an instant copy?

Question (2)

How many instant copies does an instant structure have, up to instant isomorphisms?

- We contrast to the computable case; often different, sometimes even unclear.
- Reveals how "reticent or forth-coming" a structure is.

< ロ > < 同 > < 三 >

When does a structure have an instant copy?

Theorem (Kalimullin, Melnikov, N)

Each computable structure in the following classes has an instant copy:

- Equivalence structures,
- linear orders,
- torsion-free abelian groups,
- boolean algebras,
- abelian p-groups.

Proof.

Each of these structures possesses a certain amount of reticence. Allows us to indefinitely delay without having to commit to anything important.

< D > < P > < P >

Proof.

- Let's discuss equivalence structures, simplest example.
- Take a computable equivalence structure A with infinitely many distinct classes.
- We build instant \mathcal{B} such that $\mathcal{B} \cong \mathcal{A}$.
- *B* is instant: By stage *s* we have declared the relations between $\{0, \cdots, s\}$.
- The isomorphism between \mathcal{A} and \mathcal{B} is computable, but not primitive recursive.

When does a structure have an instant copy?

- The classes above all have a "computable" basis if some sort, which is used for delaying when building an instant copy.
- However, this is not sufficient to ensure the existence of an instant copy:

Theorem (Cenzer, Remmel, KMN)

There is a computable torsion abelian group with no instant copy.

Question

- Find a reasonable sufficient condition for the existence of an instant copy.
- Formalization of a "basis" of some sort, which can by used for delaying.

(日)

When does a structure have an instant copy?

- The classes above all have a "computable" basis if some sort, which is used for delaying when building an instant copy.
- However, this is not sufficient to ensure the existence of an instant copy:

Theorem (Cenzer, Remmel, KMN)

There is a computable torsion abelian group with no instant copy.

Question

- Find a reasonable sufficient condition for the existence of an instant copy.
- Formalization of a "basis" of some sort, which can by used for delaying.

< D > < P > < P >

Theorem (Cenzer, Remmel, KMN)

There is a computable torsion abelian group with no instant copy.

Proof.

- Take $\mathcal{A} = \bigoplus_{p \in S} \mathbb{Z}_p$, for some infinite c.e. set *S* of primes.
- A diagonalization strategy making $\mathcal{A} \ncong \mathcal{P}_e$ works as follows:
 - Take $a_e \in \mathcal{P}_e$ and instantly generate a_e , $2a_e$, $3a_e$, $4a_e$, \cdots .
 - If we see that $ma_e \neq 0$ then we know it is safe to put small primes $p < \sqrt{m}$ into *S*.
 - If we see ma_e = 0 then we avoid putting primes √m S.
 - If a_e has infinite order then $\mathcal{A} \ncong \mathcal{P}_e$, and we work below $m \to \infty$. \Box

Remark about proof:

When satisfying $\mathcal{A} \ncong \mathcal{P}_e$ above, there are two outcomes:

Π_2^0 (*a_e* has infinite order), and Σ_2^0 (*a_e* has finite order).

The total nature of \mathcal{P}_e allows us to reduce the guesses to

 Π_2^0 (infinite order) versus Σ_1^0 (finite order).

• (Kalimullin, Melnikov, N) There is a computable ordered (Archimedean) abelian group without an instant copy.

Remark about proof:

When satisfying $\mathcal{A} \ncong \mathcal{P}_e$ above, there are two outcomes:

 Π_2^0 (a_e has infinite order), and Σ_2^0 (a_e has finite order).

The total nature of \mathcal{P}_e allows us to reduce the guesses to

 Π_2^0 (infinite order) versus Σ_1^0 (finite order).

• (Kalimullin, Melnikov, N) There is a computable ordered (Archimedean) abelian group without an instant copy.

When does a structure have an instant copy?

• We turn to pure relational languages. Our original conjecture was that every computable graph has an instant copy. Indeed:

Fact

Every computable locally finite graph has an instant copy.

- Converse is not true, for example the random graph and the infinite star have instant copies.
- Perhaps every computable graph has an instant copy.

Theorem (Kalimullin, Melnikov, N)

There is a computable graph with no instant copy.

・ コ ト ・ 同 ト ・ ヨ ト ・

When does a structure have an instant copy?

• We turn to pure relational languages. Our original conjecture was that every computable graph has an instant copy. Indeed:

Fact

Every computable locally finite graph has an instant copy.

- Converse is not true, for example the random graph and the infinite star have instant copies.
- Perhaps every computable graph has an instant copy.

Theorem (Kalimullin, Melnikov, N)

There is a computable graph with no instant copy.

< □ > < 同 > < 回 >

Instant categoricity

• We want to look at the complexity of an instant structure by the complexity of isomorphisms between instant copies, i.e. instant categoricity.

Definition

An instant structure A is instantly categorical if for every instant $B \cong A$ there is an instant isomorphism $f : A \mapsto B$.

• What does an "instant isomorphism" mean?

"f and f^{-1} are both primitive recursive."

- Another candidate is to say that "Graph(f) is primitive recursive", but we will not adopt this.
- For computable isomorphisms, these are all equivalent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Instant categoricity

• We want to look at the complexity of an instant structure by the complexity of isomorphisms between instant copies, i.e. instant categoricity.

Definition

An instant structure A is instantly categorical if for every instant $B \cong A$ there is an instant isomorphism $f : A \mapsto B$.

• What does an "instant isomorphism" mean?

"*f* and f^{-1} are both primitive recursive."

- Another candidate is to say that "Graph(f) is primitive recursive", but we will not adopt this.
- For computable isomorphisms, these are all equivalent.

Instant categoricity: Examples

• The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is instantly categorical.

- Given an instant copy A, some a ∈ A, and some S ⊆ A, it is primitive recursive to check if a is linearly independent over S.
- A back-and-forth argument works.
- The dense linear order (Q, <) is surprisingly not instantly categorical.</p>
 - However, it is categorical for primitive recursive Graph(*f*).
 - A back-and-forth argument does not work.
- 3 The structure (ω , Succ) is also not instantly categorical.
 - It is also not categorical for primitive recursive Graph(f).

< ロト < 同ト < ヨト

Instant categoricity: Examples

- The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is instantly categorical.
 - Given an instant copy A, some a ∈ A, and some S ⊆ A, it is primitive recursive to check if a is linearly independent over S.
 - A back-and-forth argument works.
- The dense linear order (Q, <) is surprisingly not instantly categorical.</p>
 - However, it is categorical for primitive recursive Graph(*f*).
 - A back-and-forth argument does not work.
- 3 The structure (ω , Succ) is also not instantly categorical.
 - It is also not categorical for primitive recursive Graph(*f*).

Instant categoricity: Examples

- The additive group $\bigoplus_{i \in \omega} \mathbb{Z}_p$ is instantly categorical.
 - Given an instant copy A, some a ∈ A, and some S ⊆ A, it is primitive recursive to check if a is linearly independent over S.
 - A back-and-forth argument works.
- The dense linear order (Q, <) is surprisingly not instantly categorical.</p>
 - However, it is categorical for primitive recursive Graph(*f*).
 - A back-and-forth argument does not work.
- **③** The structure (ω , Succ) is also not instantly categorical.
 - It is also not categorical for primitive recursive Graph(*f*).

< 同 ト < 三 ト

Theorem (KMN)

In each of the following classes, a structure is instantly categorical if and only if it is trivial.

- Equivalence structures: only classes of size 1, or finitely many classes at most one of which is infinite.
- Linear orders: finite.
- Boolean algebras: finite.
- Abelian p-groups: pG = 0.
- Torsion-free abelian groups: trivial group {0}.

< □ > < 同 > < 回 >

 The examples of instantly categorical structures we've seen so far were far from rigid (⊕Z_p, equivalence structures).

Theorem (KMN)

- There is a rigid functional structure which is not instantly categorical (ω, Succ) .
- There is a rigid functional structure which is instantly categorical.
- However, no instantly categorical relational structure can be rigid.

Instant categoricity vs Computable categoricity

- We saw that (ω, Succ) is an example of a computably categorical but not instantly categorical structure.
- A very natural conjecture would be that every instantly categorical structure is computably categorical.
- This is true for many natural classes (equivalence structures, linear orders, Boolean algebras, abelian *p*-groups, TFAGs).

Theorem (KMN)

There is an instantly categorical structure which is not computably categorical.

<ロ> <同> <同> < 同> < 同>

Instant categoricity vs Computable categoricity

- We saw that (ω, Succ) is an example of a computably categorical but not instantly categorical structure.
- A very natural conjecture would be that every instantly categorical structure is computably categorical.
- This is true for many natural classes (equivalence structures, linear orders, Boolean algebras, abelian *p*-groups, TFAGs).

Theorem (KMN)

There is an instantly categorical structure which is not computably categorical.

(日)

Theorem (KMN)

Let f be total and not primitive recursive. Then there is a structure A which is instant relative to f but A has no instant copy.

Theorem (KMN)

There is a structure \mathcal{A} which is instantly categorical relative to 0' but \mathcal{A} is not instantly categorical.

<ロ> <同> <同> < 同> < 同> < 同> -

Theorem (KMN)

Let f be total and not primitive recursive. Then there is a structure A which is instant relative to f but A has no instant copy.

Theorem (KMN)

There is a structure A which is instantly categorical relative to 0' but A is not instantly categorical.

< □ > < 同 > < 回 >

- Find a sufficient condition for a computable structure to have an instant copy.
- Connection with definability, Scott sentences. Note: back-and-forth works differently.
- How to define relatively instantly categorical?
- Primitive recursive analogue of 1-decidability (*n*-decidability).
- More work to be done on relativization, which will lead to investigations like spectra questions, degrees of categoricity, etc.

• Thank you.

< ロ > < 同 > < 三 >

- Find a sufficient condition for a computable structure to have an instant copy.
- Connection with definability, Scott sentences. Note: back-and-forth works differently.
- How to define relatively instantly categorical?
- Primitive recursive analogue of 1-decidability (*n*-decidability).
- More work to be done on relativization, which will lead to investigations like spectra questions, degrees of categoricity, etc.
- Thank you.