A simple conservation proof for ADS

Keita Yokoyama

JAIST / UC Berkeley

CTFM 2015 @TITech, Tokyo September 11, 2015

Ascending descending sequence

Today's target:

Definition

ADS: every infinite linear ordering has an infinite ascending or descending sequence.

ADS is an easy consequence of RT_2^2 . In fact, we can easily see the following.

Theorem (Shore/Hirschfeldt 2007)

ADS is equivalent to transitive RT_2^2 , i.e., Ramsey's theorem for transitive colorings.

(Here, $P : [\mathbb{N}]^2 \to 2$ is said to be transitive if $P(a,b) = P(b,c) \to P(a,b) = P(a,c)$.)

So, ADS is a restricted version of RT₂².

Main question

Question

What is the proof-theoretic strength, or provably total functions (in other words, Π_2^0 -part) of ADS?

In fact, we already know the result.

Theorem (Chong/Slaman/Yang 2012)

ADS + WKL₀ is a Π_1^1 -conservative extension of B Σ_2^0 .

Corollary ("Proof-theoretic proof" by Kreuzer 2012")

The Π_2^0 -part of ADS + WKL₀ is PRA.

- The proof of the above theorem is very complicated.
- Careful checking is needed to know the consistency strength.

Today, we would like to give a simpler proof of this corollary.

Ramsey's theorem and its finite approximation

The Π_2^0 -part of (infinite) Ramsey's theorem is characterized by iterated Paris-Harrington-like principles.

Definition (RCA₀)

- A finite set $X \subseteq \mathbb{N}$ is said to be 0-dense(n, k) if $|X| \ge \min X$.
- A finite set X is said to be m+1-dense(n,k) if for any $P:[X]^n \to k$, there exists $Y \subseteq X$ which is m-dense(n,k) and P-homogeneous.

Note that "X is m-dense(n, k)" can be expressed by a Σ_0^0 -formula.

Definition

• mPH_k^n : for any $a \in \mathbb{N}$ there exists an m-dense(n, k) set X such that min X > a.

Paris's argument

By the usual indicator arguments introduced by Paris, the following is known.

Theorem (essentially due to Paris 1978)

WKL₀ + RTⁿ_k is a conservative extension of I Σ_1 + {mPHⁿ_k | $m \in \omega$ } with respect to Π_2^0 -sentences.

Note that similar arguments work for Π_3^0 and Π_4^0 -part. The above conservation proof is formalizable within WKL₀, and thus we have the following.

Theorem

Over $I\Sigma_1$, $\forall m \, mPH_k^n$ is equivalent to the Σ_1 -soundness of $WKL_0 + RT_k^n$.

Note that a similar argument works with a weaker base system RCA_n*.

ADS and its finite approximation

Since ADS is equivalent to the transitive Ramsey's theorem, its Π^0_2 -part is characterized by the same arguments.

Definition (RCA₀)

- A finite set $X \subseteq \mathbb{N}$ is said to be 0-dense for ADS if $|X| \ge \min X$.
- A finite set X is said to be m+1-dense for ADS if for any transitive $P:[X]^2 \to 2$, there exists $Y \subseteq X$ which is m-dense for ADS and P-homogeneous.

Definition

• mPH^{ADS} : for any $a \in \mathbb{N}$ there exists an m-dense for ADS set X such that min X > a.

Paris's argument for ADS

Theorem

WKL₀ + ADS is a conservative extension of $I\Sigma_1 + \{mPH^{ADS} \mid m \in \omega\}$ with respect to Π_2^0 -sentences.

The above conservation proof is again formalizable within WKL_0 , and thus we have the following.

Theorem

Over $I\Sigma_1$, $\forall m \, m PH^{ADS}$ is equivalent to the Σ_1 -soundness of WKL₀ + ADS.

What we need to know is mPH^{ADS} .

α -large sets

We want to calculate the size of *m*-dense set for ADS. We use a tool from proof theory.

Definition

For ordinals below ω^{ω} (with a fixed primitive recursive ordinal notation),

- *X* is said to be $\alpha + 1$ -large if $X \{\min X\}$ is α -large,
- X is said to be γ -large if X is $\gamma[\min X]$ -large (γ : limit), where $\alpha + \omega^k[x] = \alpha + \omega^{k-1} \cdot x$.
- X is m-large if $|X| \ge m$.
- X is ω -large if $|X| \ge \min X$, *i.e.*, relatively large.
- X is ω^2 -large if X splits up into min X many ω -large sets.
- •

Density vs α -largeness

Here is a classical important result connecting α -largeness and PH-like statements.

Theorem (Solovay/Katonen 1981)

X is
$$\omega^{k+3} + \omega^3 + k + 4$$
-large \Rightarrow *X* is 1-dense(2, k).

Question

How big α is enough for the following? X is α -large $\Rightarrow X$ is m-dense(2, 2).

- An optimal answer to this question gives the proof-theoretic strength of RT₂², which is a famous open question in the field of reverse math.
- A naive approach only gives an upper bound ω_{m+1} for m-dense(2, 2).

On the other hand, this approach works well for ADS.

Calculation

By S/K-theorem, ω^6 -largeness is enough for 1-dense for ADS. Thus, X is 2-dense for ADS if it is large enough to find a ω^6 -large solution.

Definition

X is said to be $(1, \alpha)$ -dense for ADS if for any transitive $P: [X]^2 \to 2$, there exists $Y \subseteq X$ which is α -large and P-homogeneous.

Thanks to the transitivity, we can calculate the size of the above sets directly.

Lemma

X is 1-dense(2, 2k) \Rightarrow *X* is (1, ω^k)-dense for ADS.

Calculation

Now we can calculate the size of 2-dense sets.

• 2-dense for ADS \Leftarrow (1, ω^6)-dense for ADS \Leftarrow 1-dense(2, 12) \Leftarrow ω^{16} -large.

We can repeat this process.

- 3-dense for ADS \Leftarrow (1, ω^{12})-dense for ADS \Leftarrow 1-dense(2, 24) \Leftarrow ω^{28} -large.
- 4-dense for ADS \Leftarrow (1, ω^{28})-dense for ADS \Leftarrow 1-dense(2, 56) \Leftarrow ω^{60} -large.
- ...

Theorem

X is $\omega^{3^{m+1}}$ -large \Rightarrow *X* is m-dense for ADS.

ADS and its finite approximation (review)

Definition

• mPH^{ADS} : for any $a \in \mathbb{N}$ there exists an m-dense for ADS set X such that min X > a.

Theorem

WKL₀ + ADS is a conservative extension of $I\Sigma_1 + \{mPH^{ADS} \mid m \in \omega\}$ with respect to Π_2^0 -sentences.

Theorem

Over $I\Sigma_1$, $\forall m PH^{ADS}$ is equivalent to the Σ_1 -soundness of WKL₀ + ADS.

The strength of ADS

Lemma

For any $a \in \mathbb{N}$, $[a, F_m(a)]$ is a ω^m -large set.

Theorem

For any $m \in \omega$, PRA $\vdash mPH^{ADS}$.

Corollary

The Π_2^0 -part of ADS + WKL₀ is $I\Sigma_1$, or equivalently, PRA.

This conservation proof is easily formalizable within WKL_0 . Thus, we have the following.

Corollary

 $Con(ADS + WKL_0)$ is equivalent to Con(PRA) over PRA.

Questions

Question

Is there a speed-up between $ADS + WKL_0$ and RCA_0 ?

A good lower bound for *m*-dense for ADS would give a positive answer.

And, again,

Question

how big α is enough for the following?

X is α -large \Rightarrow *X* is *m*-dense(2, 2).

References

- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman. On the strength of Ramsey's theorem for pairs. Journal of Symbolic Logic, 66(1):1–55, 2001.
- J. Ketonen and R. Solovay, Rapidly Growing Ramsey Functions. Annals of Mathematics, Second Series 113(2), 267–314, 1981.
- C.T. Chong, Theodore A. Slaman, Yue Yang, \(\Pi_1^1\)-conservation of combinatorial principles weaker than Ramsey's theorem for pairs. Advances in Mathematics 230 (2012) 1060–1077.
- Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey's theorem for pairs. The Journal of Symbolic Logic 72(1), 171–206, 2007.
- A. Kreuzer. Primitive recursion and the chain antichain principle. Notre Dame Journal of Formal Logic, 53(2):245–265, 2012.
- J. B. Paris. Some independence results for Peano Arithmetic. Journal of Symbolic Logic, 43(4):725–731, 1978.
- Y. On the strength of Ramsey's theorem without Σ₁-induction. Mathematical Logic Quarterly 59(1-2), 108–111, 2013.