How unprovable is Rabin's decidability theorem?

Leszek Kołodziejczyk University of Warsaw (based on joint work with Henryk Michalewski)

> CTFM/Tanaka60 Tokyo, September 2015

What is Rabin's decidability theorem?

Rabin's theorem (1969)

The monadic second order (MSO) theory of the infinite binary tree in the language with two successors, $(\{0,1\}^{<\mathbb{N}}, S_0, S_1)$, is decidable.

- Among the most important decidability results in logic.
- Unlike other such results (Presburger, RCF, MSO for (ℕ, ≤)), seems like it might require strong axioms.
- Typical proofs involve a determinacy principle unprovable in Π_2^1 -CA₀.

Question:

How much logical strength is needed to prove Rabin's theorem?

Executive summary of the talk

```
Rabin's theorem MSO theory of (\{0,1\}^{<\mathbb{N}}, S_0, S_1) is decidable.
```

(By undefinability of truth, it's hard to state this in full in Z_2 . But the interesting phenomena appear already for Π_3^1 fragment of MSO.)

Executive summary of the talk

```
Rabin's theorem MSO theory of (\{0,1\}^{<\mathbb{N}}, S_0, S_1) is decidable.
```

(By undefinability of truth, it's hard to state this in full in Z_2 . But the interesting phenomena appear already for Π_3^1 fragment of MSO.)

Main result:

All forms of Rabin's theorem that can be meaningfully stated in Z_2 are provable in Π_3^1 -CA₀ but not in Δ_3^1 -CA₀.

Proofs rely on:

- well-known results and techniques from automata theory,
- ▶ work on determinacy principles for Bool(∑₂⁰) games in Z₂ (MedSalem, Nemoto, Tanaka; Heinatsch, Möllerfeld).

What can be said in MSO on $\{0,1\}^{<\mathbb{N}}$?

MSO: $S_0(v, w), S_1(v, w), v \in X, \neg, \lor, \land, \exists v, \exists X \text{ (for } X \text{ unary !).}$

MSO can say:

- "v is an ancestor of w": every X containing v and closed under S₀, S₁ also contains w".
- A given subset is a path, something happens on all paths etc.
- "All open games in Cantor space are determined" (and more!).
- Can interpret Presburger arithmetic, using finite sets as numbers.

But there is no pairing function, so no chance to get full arithmetic.

Rabin's theorem: proof sketch

- Work with labelled trees: $(\{0,1\}^{<\mathbb{N}}, S_0, S_1, P_{a_1}, \dots, P_{a_\ell})$ where $\{0,1\}^{<\mathbb{N}} = \bigsqcup_i P_{a_i}$ (vertex in P_{a_i} is "labelled" with letter a_i).
- By induction on MSO sentence φ, show that φ is equivalent on labelled trees to a nondeterministic tree automaton.
- The difficult induction step is for \neg (nondeterminism!).
- This step involves a determinacy principle for parity games.
- It remains to find decision procedure for "given automaton A, does it accept any tree at all?" This is easy.

Tree automata: definition

A nondeterministic tree automaton \mathcal{A} is given by:

- set of letters $\Sigma = \{a_1, \ldots, a_n\}$ (the alphabet),
- ▶ finite set of states Q,
- initial state $q_I \in Q$,
- transition relation $\Delta \subseteq Q \times \Sigma \times Q \times Q$,
- rank function rk: $Q \rightarrow \mathbb{N}$.

Idea ("like finite automata, but on infinite trees"):

- **Run** of \mathcal{A} on tree *T* labels *T* with states: vertex \emptyset gets label q_I .
- $\Delta \ni (q, a, q_0, q_1)$ means: if run reaches v in state q and reads a, then it can go to v0 in state q_0 and v1 in state q_1 simultaneously.
- Run is accepting if on each path, liminf of ranks of states is even.
- \mathcal{A} accepts T if there is an accepting run on T. (Note: this is Σ_2^1 .)

Tree automata: an example

Let A have alphabet $\{a, b, c\}$, states q_I of rank 2, q_b of rank 1, q_c of rank 0, and transitions:

Then \mathcal{A} accepts exactly a tree *T* iff on each branch there are either infinitely many *c*'s or only finitely many *b*'s.

:

 \mathcal{A} has alphabet $\{a, b, c\}$, states q_I, q_b, q_c .

:

 \mathcal{A} has alphabet $\{a, b, c\}$, states q_I, q_b, q_c .

:

 \mathcal{A} has alphabet $\{a, b, c\}$, states q_I, q_b, q_c .

:

 \mathcal{A} has alphabet $\{a, b, c\}$, states q_I, q_b, q_c .

:

 \mathcal{A} has alphabet $\{a, b, c\}$, states q_I, q_b, q_c .

Parity games: definition

For $k \in \mathbb{N}$, a parity game with ranks up to k is given by:

- finite or countable set $V = V_0 \sqcup V_1$ (the arena, or set of positions),
- initial position $v_0 \in V$,
- edge relation $E \subseteq V^2$,
- rank function rk: $V \rightarrow \{0, 1, \dots, k\}$.

Idea:

- two players: 0 and 1,
- starting in v_0 , move to positions v_1, v_2, \ldots along edges,
- player *P* chooses move from v_i iff $v_i \in V_P$,
- ▶ player 0 wins iff $\liminf_{i\to\infty} rk(v_i)$ is even.

Parity games: an example

Here \bigcirc is player 0 and \square is player 1. Game starts in upper left. Player 0 has a winning strategy.

```
Parity games: determinacy
```

```
Observation (in ACA<sub>0</sub>, say):

"All parity games are determined"

\uparrow

"All Bool(\Sigma_2^0) games are determined".
```

(Are the Bool(Σ_2^0) games in Cantor space or Baire space? Doesn't matter, cf. MedSalem-Nemoto-Tanaka.)

Important fact:

Parity games enjoy positional (memoryless, forgetful) determinacy: winning strategy can look at current position ignoring earlier ones!

Rabin's theorem: proof sketch, revisited

- Work with labelled binary trees.
- By induction on MSO sentence φ, show that φ is equivalent to a nondeterministic tree automaton.
- The difficult induction step is for ¬.
 (The automata are nondeterministic!)
- This step involves a determinacy principle for parity games.
- It remains to find decision procedure for "given automaton A, does it accept any tree?" This is easy.

Rabin's theorem: proof sketch, revisited

- Work with labelled binary trees.
- By induction on MSO sentence φ, show that φ is equivalent to a nondeterministic tree automaton.
- The difficult induction step is for ¬.
 (The complementation theorem for tree automata).
- This step involves a determinacy principle for parity games.
- It remains to find decision procedure for "given automaton A, does it accept any tree?" This is easy.

Rabin's theorem: proof sketch, revisited

- Work with labelled binary trees.
- By induction on MSO sentence φ, show that φ is equivalent to a nondeterministic tree automaton.
- The difficult induction step is for ¬.
 (The complementation theorem for tree automata).
- This step involves positional determinacy of parity games.
- It remains to find decision procedure for "given automaton A, does it accept any tree?" This is easy.

Complementation for tree automata

Theorem (Rabin)

For every tree automaton A there exists a tree automaton B such that for any tree T, B accepts T iff A does not accept T.

Complementation for tree automata

Theorem (Rabin)

For every tree automaton A there exists a tree automaton B such that for any tree T, B accepts T iff A does not accept T.

Theorem

Over ACA_0 *, the above complementation theorem:*

- (i) follows from "all parity games are positionally determined",
- (ii) implies Bool(Σ_2^0)-Det ("all Bool(Σ_2^0) games are determined").

Remark:

The exactly equivalent principle is positional determinacy for a certain class of parity games.

Positional determinacy \Rightarrow complementation

Proof sketch:

- We formalize a standard proof.
- Main observation: " \mathcal{A} accepts T" is the same as "Player 0 wins in a certain parity game $G_{\mathcal{A},T}$ " (Automaton-Pathfinder game).
- By positional determinacy " \mathcal{A} does not accept T" is "Player 1 wins in game $G_{\mathcal{A},T}$ using a positional strategy".
- The latter can be translated into a tree automaton.
 (Translation is nontrivial and relies on complementation for automata on infinite strings, which is provable in ACA₀.)

Complementation \Rightarrow Bool(Σ_2^0)-Det

Proof sketch:

- Given $x \in \mathbb{N}$, games with $\text{Diff}_x(\Sigma_2^0)$ winning condition can be represented by labelled binary trees over fixed alphabet.
- "Game represented by T is not determined" can be written as MSO sentence φ with $4 \pm \epsilon$ quantifier blocks, $\epsilon \in [0, 10]$.
- Complementation applied $\leq 4 + \epsilon$ times transforms φ into \mathcal{A}_{φ} .
- Known fact: if automaton accepts any tree, then it accepts a very simple ("regular") tree.
- Easy: game given by regular tree has to be determined.
- So, \mathcal{A}_{φ} rejects all trees!

Determinacy and comprehension

Theorem (MedSalem-Tanaka) Π_2^1 -CA₀ $\vdash \Sigma_2^0$ -Det $\land \forall x [Diff_x(\Sigma_2^0)-Det \Rightarrow Diff_{x+1}(\Sigma_2^0)-Det].$

Theorem (Heinatsch-Möllerfeld) {Diff_n(Σ_2^0)-Det : $n \in \omega$ } implies all Π_1^1 consequences of Π_2^1 -CA₀.

Corollary (essentially MedSalem-Tanaka) Π_2^1 -CA₀ \neq Bool(Σ_2^0)-Det.

Theorem

 Π_2^1 -CA₀ proves: for every x, if all parity games with ranks up to x are positionally determined, then so are all games with rank up to x + 1.

How unprovable is complementation for automata?

Theorem

The complementation theorem for tree automata is:

- (i) provable in Π_2^1 -CA₀ + Π_3^1 -IND, and thus also in Π_3^1 -CA₀,
- (ii) unprovable in Π_2^1 -CA₀ and thus also in Δ_3^1 -CA₀.

Proof.

Immediate corollary of the determinacy characterization and MedSalem-Tanaka.

What about the decidability theorem itself?

How unprovable is Rabin's decidability theorem?

Theorem

Over Π_2^1 -CA₀, the statement "the Π_3^1 (or Π_4^1, Π_5^1 etc.) fragment of the MSO theory of ({0,1}^{\mathbb{N}}, S₀, S₁) is decidable":

- (i) follows from "all parity games are positionally determined",
- (ii) *implies* Bool(Σ_2^0)-Det.

How unprovable is Rabin's decidability theorem?

Theorem

Over Π_2^1 -CA₀, the statement "the Π_3^1 (or Π_4^1, Π_5^1 etc.) fragment of the MSO theory of ({0,1}^{\mathbb{N}}, S₀, S₁) is decidable":

- (i) follows from "all parity games are positionally determined",
- (ii) *implies* Bool(Σ_2^0)-Det.

Proof of (ii):

- Given x∈N, exists Π¹₃ MSO sentence ψ_x expressing "all Diff_x(Σ⁰₂) games are determined".
- Assume *e* decides the Π_3^1 fragment of MSO.
- Provably in Π_2^1 -CA₀, $\forall x [e(\psi_x) = 1 \Rightarrow e(\psi_{x+1}) = 1]$.
- By induction, $\forall x [e(\psi_x) = 1]$.

Rabin's theorem as a reflection principle

Up to now, we relied on earlier results on determinacy in Z_2 . By analyzing techniques used to prove those results, we can get:

Theorem

- For any fixed $n \ge 3$, t.f.a.e. over Π_2^1 -CA₀:
 - 1. Bool(Σ_2^0)-Det,
 - 2. positional determinacy of all parity games,
 - 3. the complementation theorem for tree automata,
 - 4. decidability of the Π_n^1 fragment of MSO on ($\{0,1\}^{\mathbb{N}}, S_0, S_1$),
 - 5. Π_3^1 -reflection for Π_2^1 -CA₀.

Rabin as reflection: proof ingredients

- (o) {Diff_n(Σ_2^0)-Det : $n \in \omega$ } implies all Π_1^1 theorems of Π_2^1 -CA₀. (Heinatsch-Möllerfeld).
- (i) (o) can be improved (by careful analysis of role of Axiom β): {Diff_n(Σ_2^0)-Det : $n \in \omega$ } axiomatizes Π_3^1 theorems of Π_2^1 -CA₀.
- (ii) (i) can be formalized in reasonably weak theory (apparently in PRA, but even Π_2^1 -CA₀ would still be ok).
- (iii) To get from (ii), we need an argument about β_2 models.

Executive summary, once more

```
Rabin's theorem MSO theory of (\{0,1\}^{<\mathbb{N}}, S_0, S_1) is decidable.
```

Main result:

All forms of Rabin's theorem that can be meaningfully stated in Z_2 are provable in Π_3^1 -CA₀ but not in Δ_3^1 -CA₀.

Proofs rely on:

- well-known results and techniques from automata theory,
- work on determinacy principles for Bool(Σ₂⁰) games in Z₂ (MedSalem, Nemoto, Tanaka; Heinatsch, Möllerfeld).

Further work

- Do the equivalences we prove in Π_2^1 -CA₀ hold in ACA₀?
- Is there a more general connection between determinacy and ∏₃¹-reflection?
- What is the exact logical strength needed to prove decidability of the MSO theory of (N, ≤)?