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What is a random real

A random real must pass all the performable statistical tests.
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. . . . . .

Martin-Löf-randomness

.Definition..

.. ..

.

.

A Martin-Löf test is an r.e. sequence of open sets {Un}n∈ω so
that ∀nµ(Un) < 2−n.
A real x passes a Martin-Löf test {Un}n∈ω if x ̸∈

∩
n Un.

A real x is Martin-Löf-random (or 1-random) if it passes all
Martin-Löf tests.
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Distributions of random reals

A Martin-Löf random real x can
<T ∅′;
range over ≥T ∅′;
Turing incomparable with ∅′.
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Probability measure

.Definition..

.. ..

.

.

A measure ρ over 2ω is probability measure if
...1 ρ(∅) = 1; and
...2 For any σ ∈ 2<ω, ρ(σ) = ρ(σa0) + ρ(σa1).
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Continuous measure

.Definition..

.. ..

.

.Given a measure ρ, a real x is an atomic respect to ρ if ρ({x}) > 0.
.Definition..
.. ..

.

.A measure ρ is continuous if ∀xρ({x}) = 0.
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Representing measures

A measure ρ can be represented by
{(p, q, σ) ∈ Q2 × 2<ω | p ≤ ρ(σ) ≤ q}.

A measure ρ is recursive if its representation is recursive.

Yu (IMS of Nanjing University) On the reals which can be random September 10, 2015 7 / 26



. . . . . .

Representing measures

A measure ρ can be represented by
{(p, q, σ) ∈ Q2 × 2<ω | p ≤ ρ(σ) ≤ q}.

A measure ρ is recursive if its representation is recursive.

Yu (IMS of Nanjing University) On the reals which can be random September 10, 2015 7 / 26



. . . . . .

Randomness under general probability measures

For a fixed probability measure ρ, we may define Martin-Löf
randomness respect to ρ.
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NCR

.Definition..

.. ..

.

.

A real x is never continuous random (or NCR), if x cannot be random
respect to any continuous measure.
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NCR is countable

.
Theorem (Reimann and Slaman)..
.. ..

.

.Every real in NCR is hyperarithmetic.

The proof is based on Woodin’s result that every nonhyperarithmetic
real tt-cups a real z to Oz, the hyperjump relative to z.
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. . . . . .

Higher randomness

.Definition..

.. ..

.

.

...1 A real x is ∆1
1-random if it does not belong to any ∆1

1-null set.
...2 A real x is Π1

1-random if it does not belong to any Π1
1-null set.

Yu (IMS of Nanjing University) On the reals which can be random September 10, 2015 11 / 26



. . . . . .

Some basic facts

.
Theorem (Sacks)..
.. ..

.

.{x | x ≥h O} is a Π1
1 null set.

.
Theorem (Kechris; Stern; Hjorth and Nies)..
.. ..

.

.There is a largest Π1
1-null set.

.
Theorem (Stern; Chong, Nies and Yu)..

.. ..

.

.

A real x is Π1
1-random iff x is ∆1

1-random and ωx
1 = ωCK

1 iff x is
∆1

1-random and every function ∆1
1 in x is dominated by a ∆1

1-function.
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. . . . . .

On NCRΠ1
1

.
Theorem (Chong and Yu)..
.. ..

.

.

NCRΠ1
1
= {x | x ∈ Lωx

1
}.

.Proof...

.. ..

.

.

NCRΠ1
1

is a Π1
1-set.

NCRΠ1
1

does not contain a perfect subset.
If x ∈ Lωx

1
, then for any continuous measure ρ, either ρ ≥h x or

x ⊕ ρ ≥h Oρ.
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To fully understand these facts
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. . . . . .

L-randomness

.Definition..

.. ..

.

.

A real x is L-random if for any L-coded sequence open sets {Un}n∈ω

with ∀nµ(Un) < 2−n, x ̸∈
∩

n Un.

So an L-random real is exactly a Solovay real.
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. . . . . .

NCRL

.
Proposition (Yu and Zhu)..

.. ..

.

.

NCRL is a Π1
3-set.

If NCRL ̸= 2ω, then it is not Π1
2.

If x is L-random and y ∈ L[x] \ L, then y ̸∈ NCRL.
If V = L[r] for some L-random real r, then NCRL is a proper
Σ1

2-set.
If for any real x, (2ω)L[x] is countable, then

NCRL does not contain a perfect subset.
NCRL is Σ1

2 if and only if NCRL ⊆ L.

The third item follows from a set theoretic version of Demuth
Theorem.
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. . . . . .

Under PD

.Proposition..

.. ..

.

.

Every Π1
2-singleton belongs to NCRL. Actually if A is a countable

Π1
2-set, then A ⊆ NCRL.

.Proof...

.. ..

.

.By Shoenfield absoluteness.
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Some examples

.
Theorem (Solovay)..
.. ..

.

.0♯ is a Π1
2-singleton.

.
Theorem (Friedman)..
.. ..

.

.There is a nonconstructible Π1
2-singleton x <L 0♯.

By Friedman, there exists a non-Π1
2-singleton belonging to a countable

Π1
2-set.
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. . . . . .

L-jumps

Let κx = ((ℵ1)
+)L[x]. Note that ℵ1 is weakly compact in L[x].

So κx < κx⊕y implies L[x ⊕ y] |= ∃x♯.
.Definition..
.. ..

.

.P2 = {x | ∀y(κx ≤ κy =⇒ x ≤L y)}.

Note that x ∈ P2 =⇒ x♯ ∈ P2.
0, 0♯, (0♯)♯, · · · ∈ P2.
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. . . . . .

P2 ⊆ NCRL.

.
Proposition (Yu and Zhu)..
.. ..

.

.P2 ⊆ NCRL.
.Proof...

.. ..

.

.

If x is L-random respect to ρ, then κx ≤ κρ. So x ∈ L[ρ], a
contradiction.
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. . . . . .

Q3

.Definition..

.. ..

.

.

Q3 = {x | ∃α < ω1∀z(|z| = α =⇒ x ≤∆1
3

z)}.

By the previous result, Q3 ̸⊆ NCRL.
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. . . . . .

NCRL ⊆ Q3 (I)

.
Theorem (Yu and Zhu)..
.. ..

.

.NCRL ⊆ Q3.
.Lemma..

.. ..

.

.

For any real x, there is a real y ≥T x so that there is a continuous
measure ρ ≤T y so that y is L-random respect to ρ.

Let

B = {y | ∃ρ ≤T y(ρ is continuous and y is L-random respect to ρ)}.

Then B is a Π1
2 set and has cofinally many L-degrees.

B is co-uncountable.
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. . . . . .

NCRL ⊆ Q3 (II)

Let D = {y0 | ∀y(y ≥T y0 → y ∈ B)} be a nonempty Π1
2-set.

B contains the Q3-complete real y0,3 which is a base for D.

The relativized version is read as that for any real z, the set Bz = {y |
∃ρ ≤T y ⊕ z(ρ is continuous and y is L[z]-random respect to ρ)}
contains an upper cone with the base yz,3.
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. . . . . .

NCRL ⊆ Q3 (III)

A higher version of Posner-Robinson Theorem.
.
Theorem (Woodin)..
.. ..

.

.If x ̸∈ Q3, then there is a real z so that x ⊕ z ≥tt yz,3.

Then for any real x ̸∈ Q3, there is a real z so that x ⊕ z is L[z]-random
respect to some continuous measure ρ ≤T x ⊕ z.

Applying Demuth’s technique, we have that x is L[z]-random respect
to some continuous measure ρ0 ≤L z ⊕ ρ.

So NCRL ⊆ Q3.
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. . . . . .

Some questions

.Question..

.. ..

.

.

...1 NCRL =
∪
{A | A is a countable and Π1

2}?

...2 Is NCRL cofinal (in the L-degree sense) in Q3?
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Thanks
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