# On the reals which can be random

### Liang Yu

Institute of Mathematical Science Nanjing University

### September 10, 2015



Yu (IMS of Nanjing University)

On the reals which can be random

 ▶
 ▲
 ≥
 ▶
 ≥
 √
 <</td>

 September 10, 2015
 1 / 26

# What is a random real

### A random real must pass all the *performable* statistical tests.

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015 2 / 26

- 4 同 ト 4 ヨ ト 4 ヨ ト

3

### Definition

- A Martin-Löf test is an r.e. sequence of open sets {U<sub>n</sub>}<sub>n∈ω</sub> so that ∀nµ(U<sub>n</sub>) < 2<sup>-n</sup>.
- A real x passes a Martin-Löf test  $\{U_n\}_{n\in\omega}$  if  $x\notin\bigcap_n U_n$ .
- A real x is *Martin-Löf-random* (or 1-random) if it passes all Martin-Löf tests.

# Distributions of random reals

- A Martin-Löf random real x can
  - $<_T \emptyset'$ ;
  - range over  $\geq_T \emptyset'$ ;
  - Turing incomparable with  $\emptyset'$ .

3

3 🕨 🖌 3 🕨

### Definition

A measure  $\rho$  over  $2^{\omega}$  is probability measure if

• 
$$ho(\emptyset)=1;$$
 and

2 For any 
$$\sigma \in 2^{<\omega}$$
,  $\rho(\sigma) = \rho(\sigma^{0}) + \rho(\sigma^{1})$ .

Yu (IMS of Nanjing University)

3

- 4 同 ト 4 ヨ ト 4 ヨ ト

### Definition

Given a measure  $\rho$ , a real x is an *atomic* respect to  $\rho$  if  $\rho({x}) > 0$ .

### Definition

A measure  $\rho$  is *continuous* if  $\forall x \rho(\{x\}) = 0$ .

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015 6 / 26

• • = • • = •

A measure  $\rho$  can be represented by  $\{(p, q, \sigma) \in \mathbb{Q}^2 \times 2^{<\omega} \mid p \leq \rho(\sigma) \leq q\}.$ 

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015 7 / 26

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

A measure  $\rho$  can be represented by  $\{(p, q, \sigma) \in \mathbb{Q}^2 \times 2^{<\omega} \mid p \leq \rho(\sigma) \leq q\}.$ 

A measure  $\rho$  is recursive if its representation is recursive.

Yu (IMS of Nanjing University)

On the reals which can be random

 ▶
 ▲
 ≡
 ▶
 ≡
 √) 
 <</td>

 September 10, 2015
 7 / 26

# Randomness under general probability measures

For a fixed probability measure  $\rho$ , we may define Martin-Löf randomness respect to  $\rho$ .

3 N A 3 N

### Definition

A real x is never continuous random (or *NCR*), if x cannot be random respect to any continuous measure.

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015 9 / 26

• • = • • = •

### Theorem (Reimann and Slaman) Every real in NCR is hyperarithmetic.

3 🕨 🖌 3 🕨

### Theorem (Reimann and Slaman)

Every real in NCR is hyperarithmetic.

The proof is based on Woodin's result that every nonhyperarithmetic real *tt*-cups a real *z* to  $\mathcal{O}^z$ , the hyperjump relative to *z*.

### Definition

- A real x is  $\Delta_1^1$ -random if it does not belong to any  $\Delta_1^1$ -null set.
- **2** A real x is  $\Pi_1^1$ -random if it does not belong to any  $\Pi_1^1$ -null set.

Theorem (Sacks)  $\{x \mid x \ge_h \mathcal{O}\}$  is a  $\Pi_1^1$  null set.

Theorem (Kechris; Stern; Hjorth and Nies) There is a largest  $\Pi_1^1$ -null set.

Theorem (Stern; Chong, Nies and Yu)

A real x is  $\Pi_1^1$ -random iff x is  $\Delta_1^1$ -random and  $\omega_1^x = \omega_1^{CK}$  iff x is  $\Delta_1^1$ -random and every function  $\Delta_1^1$  in x is dominated by a  $\Delta_1^1$ -function.

# On $NCR_{\Pi_1^1}$

# Theorem (Chong and Yu) $NCR_{\Pi_1^1} = \{x \mid x \in L_{\omega_1^x}\}.$

Proof.

- $NCR_{\Pi_1^1}$  is a  $\Pi_1^1$ -set.
- $NCR_{\Pi_1^1}$  does not contain a perfect subset.
- If  $x \in L_{\omega_1^x}$ , then for any continuous measure  $\rho$ , either  $\rho \ge_h x$  or  $x \oplus \rho \ge_h \mathcal{O}^{\rho}$ .

- 3

• • = • • = •

# To fully understand these facts

DE GRUYTER

### Chi Tat Chong, Liang Yu RECURSION THEORY

SERIES IN LOGIC AND ITS APPLICATIONS 8

₽ G

Yu (IMS of Nanjing University)

On the reals which can be random

B→ 4 ≥→ 4 ≥→ ≥
September 10, 2015

# *L*-randomness

### Definition

A real x is L-random if for any L-coded sequence open sets  $\{U_n\}_{n\in\omega}$  with  $\forall n\mu(U_n) < 2^{-n}$ ,  $x \notin \bigcap_n U_n$ .

Yu (IMS of Nanjing University)

On the reals which can be random

 →
 ≥
 <</td>
 ≥
 >

 September 10, 2015

# *L*-randomness

### Definition

A real x is L-random if for any L-coded sequence open sets  $\{U_n\}_{n\in\omega}$ with  $\forall n\mu(U_n) < 2^{-n}$ ,  $x \notin \bigcap_n U_n$ .

So an *L*-random real is exactly a Solovay real.

# NCRL

### Proposition (Yu and Zhu)

- $NCR_L$  is a  $\Pi_3^1$ -set.
- If  $NCR_L \neq 2^{\omega}$ , then it is not  $\Pi_2^1$ .
- If x is L-random and  $y \in L[x] \setminus L$ , then  $y \notin NCR_L$ .
- If V = L[r] for some L-random real r, then  $NCR_L$  is a proper  $\Sigma_2^1$ -set.
- If for any real x,  $(2^{\omega})^{L[x]}$  is countable, then
  - NCR<sub>L</sub> does not contain a perfect subset.
  - NCR<sub>L</sub> is  $\Sigma_2^1$  if and only if NCR<sub>L</sub>  $\subseteq$  L.

The third item follows from a set theoretic version of Demuth Theorem.

Yu (IMS of Nanjing University)



### Proposition

Every  $\Pi_2^1$ -singleton belongs to NCR<sub>L</sub>. Actually if A is a countable  $\Pi_2^1$ -set, then  $A \subseteq NCR_L$ .

Proof.

By Shoenfield absoluteness.

Yu (IMS of Nanjing University)

3

Theorem (Solovay)

 $0^{\sharp}$  is a  $\Pi_2^1$ -singleton.

Yu (IMS of Nanjing University) On the reals which

On the reals which can be random

September 10, 2015

< 回 > < 回 > < 回 >

18 / 26

3

### Theorem (Solovay)

 $0^{\sharp}$  is a  $\Pi_2^1$ -singleton.

### Theorem (Friedman)

There is a nonconstructible  $\Pi_2^1$ -singleton  $x <_L 0^{\sharp}$ .

Yu (IMS of Nanjing University)

On the reals which can be random

→ ◆ ≥ ▶ ◆ ≥ ▶

September 10, 2015

3

### Theorem (Solovay)

 $0^{\sharp}$  is a  $\Pi_2^1$ -singleton.

### Theorem (Friedman)

There is a nonconstructible  $\Pi_2^1$ -singleton  $x <_L 0^{\sharp}$ .

By Friedman, there exists a non- $\Pi^1_2\text{-singleton}$  belonging to a countable  $\Pi^1_2\text{-set}.$ 



### Let $\kappa^{x} = ((\aleph_{1})^{+})^{L[x]}$ . Note that $\aleph_{1}$ is weakly compact in L[x].

Let  $\kappa^x = ((\aleph_1)^+)^{L[x]}$ . Note that  $\aleph_1$  is weakly compact in L[x]. So  $\kappa^x < \kappa^{x \oplus y}$  implies  $L[x \oplus y] \models \exists x^{\sharp}$ .

#### Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

Let  $\kappa^x = ((\aleph_1)^+)^{L[x]}$ . Note that  $\aleph_1$  is weakly compact in L[x]. So  $\kappa^x < \kappa^{x \oplus y}$  implies  $L[x \oplus y] \models \exists x^{\sharp}$ .

#### Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

Note that  $x \in P_2 \implies x^{\sharp} \in P_2$ .

Let  $\kappa^{x} = ((\aleph_{1})^{+})^{L[x]}$ . Note that  $\aleph_{1}$  is weakly compact in L[x]. So  $\kappa^x < \kappa^{x \oplus y}$  implies  $L[x \oplus y] \models \exists x^{\sharp}$ .

#### Definition

$$P_2 = \{x \mid \forall y (\kappa^x \leq \kappa^y \implies x \leq_L y)\}.$$

Note that  $x \in P_2 \implies x^{\sharp} \in P_2$ .  $0, 0^{\sharp}, (0^{\sharp})^{\sharp}, \dots \in P_{2}.$ 



Proposition (Yu and Zhu)  $P_2 \subseteq NCR_L$ .

### Proof.

If x is L-random respect to  $\rho$ , then  $\kappa^x \leq \kappa^{\rho}$ . So  $x \in L[\rho]$ , a contradiction.

3



# Definition $Q_3 = \{ x \mid \exists \alpha < \omega_1 \forall z (|z| = \alpha \implies x \leq_{\Delta_3^1} z) \}.$

Yu (IMS of Nanjing University)

On the reals which can be random

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q () September 10, 2015



### Definition

$$Q_3 = \{ x \mid \exists \alpha < \omega_1 \forall z (|z| = \alpha \implies x \leq_{\Delta_3^1} z) \}.$$

By the previous result,  $Q_3 \not\subseteq NCR_L$ .

3

21 / 26

< 同 > < 国 > < 国 >

# $NCR_{I} \subset Q_{3}$ (I)

# Theorem (Yu and Zhu) $NCR_{I} \subset Q_{3}$ .

#### Lemma

For any real x, there is a real  $y >_T x$  so that there is a continuous measure  $\rho \leq_T y$  so that y is L-random respect to  $\rho$ .

#### l et

 $B = \{y \mid \exists \rho \leq_T y(\rho \text{ is continuous and } y \text{ is } L\text{-random respect to } \rho)\}.$ 

Then B is a  $\Pi_2^1$  set and has cofinally many L-degrees.

# $NCR_{l} \subseteq Q_{3}$ (I)

# Theorem (Yu and Zhu) $NCR_{I} \subset Q_{3}$ .

#### Lemma

For any real x, there is a real  $y >_T x$  so that there is a continuous measure  $\rho \leq_T y$  so that y is L-random respect to  $\rho$ .

#### l et

 $B = \{y \mid \exists \rho <_T y(\rho \text{ is continuous and } y \text{ is } L\text{-random respect to } \rho)\}.$ 

Then B is a  $\Pi_2^1$  set and has cofinally many L-degrees. B is co-uncountable.

Let  $D = \{y_0 \mid \forall y (y \ge_T y_0 \rightarrow y \in B)\}$  be a nonempty  $\Pi_2^1$ -set. B contains the  $Q_3$ -complete real  $y_{0,3}$  which is a base for D.

Let  $D = \{y_0 \mid \forall y(y \ge_T y_0 \to y \in B)\}$  be a nonempty  $\Pi_2^1$ -set. B contains the  $Q_3$ -complete real  $y_{0,3}$  which is a base for D.

The relativized version is read as that for any real z, the set  $B_z = \{y \mid \exists \rho \leq_T y \oplus z(\rho \text{ is continuous and } y \text{ is } L[z]\text{-random respect to } \rho)\}$  contains an upper cone with the base  $y_{z,3}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem (Woodin)

If  $x \notin Q_3$ , then there is a real z so that  $x \oplus z \ge_{tt} y_{z,3}$ .

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015

A B + A B +

3

Theorem (Woodin)

If  $x \notin Q_3$ , then there is a real z so that  $x \oplus z \ge_{tt} y_{z,3}$ .

Then for any real  $x \notin Q_3$ , there is a real z so that  $x \oplus z$  is L[z]-random respect to some continuous measure  $\rho \leq_T x \oplus z$ .

Theorem (Woodin)

If  $x \notin Q_3$ , then there is a real z so that  $x \oplus z \ge_{tt} y_{z,3}$ .

Then for any real  $x \notin Q_3$ , there is a real z so that  $x \oplus z$  is L[z]-random respect to some continuous measure  $\rho \leq_T x \oplus z$ .

Applying Demuth's technique, we have that x is L[z]-random respect to some continuous measure  $\rho_0 \leq_L z \oplus \rho$ .

Theorem (Woodin)

If  $x \notin Q_3$ , then there is a real z so that  $x \oplus z \ge_{tt} y_{z_3}$ .

Then for any real  $x \notin Q_3$ , there is a real z so that  $x \oplus z$  is L[z]-random respect to some continuous measure  $\rho \leq_T x \oplus z$ .

Applying Demuth's technique, we have that x is L[z]-random respect to some continuous measure  $\rho_0 \leq_I z \oplus \rho$ .

So  $NCR_1 \subset Q_3$ .



#### Question

### • NCR<sub>L</sub> = $\bigcup \{A \mid A \text{ is a countable and } \Pi_2^1\}$ ?

Yu (IMS of Nanjing University) On the r

On the reals which can be random

< ▷ < ≥ < ≥ < ≥ < ≥</li>
 September 10, 2015

### Question

- NCR<sub>L</sub> =  $\bigcup \{A \mid A \text{ is a countable and } \Pi_2^1\}$ ?
- **2** Is  $NCR_L$  cofinal (in the L-degree sense) in  $Q_3$ ?

Yu (IMS of Nanjing University)

On the reals which can be random

▷ ★ ≥ ★ ★ ≥ ★ ≥
September 10, 2015

### Thanks

Yu (IMS of Nanjing University)

On the reals which can be random

September 10, 2015

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの