# Axiom schema of Markov's principle preserves disjunction and existence properties

Nobu-Yuki Suzuki

Shizuoka University

Computability Theory and Foundations of Mathematics 2015 September 7, 2015 (Tokyo, Japan)

# Introduction: Disjunction and Existence Properties

"Hallmarks" of constructivity of intuitionistic logic  $\mathbf{H}_*$ :

### Fact

 $\mathbf{H}_*$  has the disjunction property (DP); for every  $A \lor B$ :  $\mathbf{H}_* \vdash A \lor B \Rightarrow \mathbf{H}_* \vdash A$  or  $\mathbf{H}_* \vdash B$ .

 $\mathbf{H}_*$  has the existence property (EP); for every  $\exists xA(x): \mathbf{H}_* \vdash \exists xA(x) \Rightarrow$  there exists a v such that  $\mathbf{H}_* \vdash A(v)$ .

N.B. A(v) should be taken as a formula congruent to A free from collision of variables.

# Introduction: Disjunction and Existence Properties

"Hallmarks" of constructivity of intuitionistic logic  $\mathbf{H}_*$ :

### Fact

 $\mathbf{H}_*$  has the disjunction property (DP); for every  $A \lor B$ :  $\mathbf{H}_* \vdash A \lor B \Rightarrow \mathbf{H}_* \vdash A$  or  $\mathbf{H}_* \vdash B$ .

**H**<sub>\*</sub> has the existence property (EP); for every  $\exists xA(x)$ : **H**<sub>\*</sub>  $\vdash \exists xA(x) \Rightarrow$  there exists a *v* such that **H**<sub>\*</sub>  $\vdash A(v)$ .

 $\mathbf{H}_* + A$ : the logic obtained from  $\mathbf{H}_*$  by adding the axiom schema A. There are schmemata A such that  $\mathbf{H}_* + A$  enjoys both of DP and EP.

We are interested in such schemata (i.e.,  $\mathbf{H}_* + A$  still enjoys DP and EP) in the setting of Intermediate Predicate Logics, particularly in those schemata related to constructive theories.

N.B. A(v) should be taken as a formula congruent to A free from collision of variables.

# Markov's Principle and Limited Principle of Omniscience

In the setting of intermediate Predicate Logics, we consider:

Axiom schema of Markov's principle:

$$MP: \quad \forall x(A(x) \lor \neg A(x)) \land \neg \neg \exists x A(x) \to \exists x A(x).$$

Axiom schema of the limited principle of omniscience:

$$LPO: \quad \forall x(A(x) \lor \neg A(x)) \to \exists xA(x) \lor \neg \exists xA(x),$$

Both principles enlarge the concept of constructivity, particularly the concept of  $\exists$  from that of intuitionistic logic  $H_*$ . However, still we have:

# **Theorem** $H_* + MP$ and $H_* + LPO$ enjoy DP and EP. That is, MP and LPO preserve DP and EP.

### Definition

A formula is said to be a Harrop-formula (H-formula) if every strictly positive subformula is neither of the form  $A \lor B$  nor  $\exists xA(x)$ .

### Theorem (Harrop)

**H**<sub>\*</sub> has the *H*(arrop)-DP and the *H*(arrop)-EP, i.e., for any *H*-formula *H*,  $\mathbf{H}_* \vdash H \rightarrow A \lor B \Rightarrow \mathbf{H}_* \vdash H \rightarrow A$  or  $\mathbf{H}_* \vdash H \rightarrow B$ ,  $\mathbf{H}_* \vdash H \rightarrow \exists xA(x) \Rightarrow \mathbf{H}_* \vdash H \rightarrow A(v)$  for some *v*.

#### Theorem

 $\mathbf{H}_* + MP$  and  $\mathbf{H}_* + LPO$  enjoy H-DP and H-EP. That is, MP and LPO preserve H-DP and H-EP.

# **Pointed Join of Kripke Models**

# Definition

- M<sub>1</sub>, M<sub>2</sub>: Kripke frames with the least elements 0<sub>1</sub> and 0<sub>2</sub>, resp., such that the domains at 0<sub>1</sub> and 0<sub>2</sub> coincide with V(= D<sub>1</sub>(0<sub>1</sub>) = D<sub>2</sub>(0<sub>2</sub>)). A Kripke frame M is said to be the pointed join frame of M<sub>1</sub> and M<sub>2</sub>, if M = {(0, V)} ↑ M<sub>1</sub> ⊕ M<sub>2</sub> with a fresh least element 0.
- (M<sub>1</sub>, ⊨<sub>1</sub>), (M<sub>2</sub>, ⊨<sub>2</sub>): Kripke models with V = D<sub>1</sub>(0<sub>1</sub>) = D<sub>2</sub>(0<sub>2</sub>). A Kripke model (M, ⊨) is said to be a pointed join model of (M<sub>1</sub>, ⊨<sub>1</sub>) and (M<sub>2</sub>, ⊨<sub>2</sub>), if M is the pointed join frame of M<sub>1</sub> and M<sub>2</sub>, and the restrictions of
  - $\models$  to  $\mathbf{M}_1$  and  $\mathbf{M}_2$  are  $\models_1$  and  $\models_2$ , resp.



# **Axiomatic Truth and its Preservation**

## Definition

A formula A is said to be axiomatically true in a Kripke model  $(M, \models)$ , if universal closures of all of substitution instances of A are true in  $(M, \models)$ .

#### Lemma

If A preserves its axiomatic truth in the construction of pointed join models, i.e., satisfies the following:

If A is axiomatically true in Kripke models (M<sub>1</sub>, ⊨<sub>1</sub>) and (M<sub>2</sub>, ⊨<sub>2</sub>) with V = D<sub>1</sub>(0<sub>1</sub>) = D<sub>2</sub>(0<sub>2</sub>), then A is still axiomatically true in any pointed join model of (M<sub>1</sub>, ⊨<sub>1</sub>) and (M<sub>2</sub>, ⊨<sub>2</sub>),

then  $\mathbf{H}_* + A$  preserves H-DP and H-EP.

# **Axiomatic Truth and its Preservation**

## Definition

A formula A is said to be axiomatically true in a Kripke model  $(\mathbf{M}, \models)$ , if universal closures of all of substitution instances of A are true in  $(\mathbf{M}, \models)$ .

#### Lemma

If A preserves its axiomatic truth in the construction of pointed join models, i.e., satisfies the following:

If A is axiomatically true in Kripke models (M<sub>1</sub>, ⊨<sub>1</sub>) and (M<sub>2</sub>, ⊨<sub>2</sub>) with V = D<sub>1</sub>(0<sub>1</sub>) = D<sub>2</sub>(0<sub>2</sub>), then A is still axiomatically true in any pointed join model of (M<sub>1</sub>, ⊨<sub>1</sub>) and (M<sub>2</sub>, ⊨<sub>2</sub>),

then  $\mathbf{H}_* + A$  preserves H-DP and H-EP.

#### Theorem

MP and LPO have this property. Hence, MP and LPO preserve H-DP and H-EP.

# Another Phenomenon: Prawitz-Doorman EP

### Definition

A formula is said to be a weak Harrop-formula (wH-formula) if every strictly positive subformula is not of the form  $\exists xA(x)$ .

### Theorem (Prawitz, Doorman)

 $\mathbf{H}_*$  has the Prawitz-Doorman EP, i.e., for any wH-formula H,  $\mathbf{H}_* \vdash H \rightarrow \exists x A(x) \Rightarrow$ there exist finitely many  $v_1, \ldots, v_n$  in the vocabulary of  $H \rightarrow \exists x A(x)$ such that  $\mathbf{H}_* \vdash H \rightarrow A(v_1) \lor \cdots \lor A(v_n)$ .

Prawitz proved EP of  $H_*$  by showing DP and the Prawitz-Doorman EP.

# Another Phenomenon: Prawitz-Doorman EP

### Definition

A formula is said to be a weak Harrop-formula (wH-formula) if every strictly positive subformula is not of the form  $\exists xA(x)$ .

### Theorem (Prawitz, Doorman)

 $\mathbf{H}_*$  has the Prawitz-Doorman EP, i.e., for any wH-formula H,  $\mathbf{H}_* \vdash H \rightarrow \exists x A(x) \Rightarrow$ there exist finitely many  $v_1, \ldots, v_n$  in the vocabulary of  $H \rightarrow \exists x A(x)$ such that  $\mathbf{H}_* \vdash H \rightarrow A(v_1) \lor \cdots \lor A(v_n)$ .

Prawitz proved EP of  $\mathbf{H}_*$  by showing DP and the Prawitz-Doorman EP.

### Proposition

 $\mathbf{H}_* + MP$  and  $\mathbf{H}_* + LPO$  fail to have the Prawitz-Doorman EP. That is, MP and LPO do not preserve the Prawitz-Doorman EP.

N.-Y. Suzuki (Shizuoka Univ.) Markov's principle preserves DP and EP CTFM 2015 (Sept. 7, 2015) 7 / 11

In this talk, we considered preservation of DP and EP by two schemata MP and LPO in the setting of intermediate predicate logics.

|                                                | H-DP,H-EP | PD-EP |
|------------------------------------------------|-----------|-------|
| H <sub>*</sub>                                 | YES       | YES   |
| $\mathbf{H}_{*} + MP$ , $\mathbf{H}_{*} + LPO$ | YES       | NO    |
|                                                |           |       |

In this talk, we considered preservation of DP and EP by two schemata MP and LPO in the setting of intermediate predicate logics.

|                                                   | H-DP,H-EP | PD-EP |
|---------------------------------------------------|-----------|-------|
| H <sub>*</sub>                                    | YES       | YES   |
| $\mathbf{H}_{*} + MP$ , $\mathbf{H}_{*} + LPO$    | YES       | NO    |
| $\mathbf{H}_{*} + WLPO$ , $\mathbf{H}_{*} + LLPO$ | ?         | YES   |
| $H_* + CD$                                        | YES       | NO    |
| $H_* + WEM$                                       | NO        | YES   |

 $\begin{array}{l} WLPO: \ \forall x(p(x) \lor \neg p(x)) \to \neg \exists xp(x) \lor \neg \neg \exists xp(x), \\ LLPO: \ \left\{ \forall x(p(x) \lor \neg p(x)) \land \forall x(q(x) \lor \neg q(x)) \land \neg (\exists xp(x) \land \exists xq(x)) \right\} \\ \to \neg \exists xp(x) \lor \neg \exists xq(x), \\ CD: \ \forall x(p(x) \lor q) \to \forall xp(x) \lor q, \ (x \text{ is not free in } q) \\ WEM: \ \neg p \lor \neg \neg p, \end{array}$ 

# Background Story: Ono's Problem P52 Relations betwen DP and EP in Intermediate Logics

### **Relations?**

In intermediate predicate logics:  $DP \Rightarrow EP$ ?  $EP \Rightarrow DP$ ?

- (Nakamura 1983) There exists an intermediate logic having DP but lacking EP. I.e., DP ≠ EP.
- EP ⇒ DP? in intermediate logics Ono's Problem P52 (1987) (cf. Umezawa(1980), Minari(1983))

# Background Story: Ono's Problem P52 Relations betwen DP and EP in Intermediate Logics

# Proposition

In intermediate predicate logics, EP and DP are independent. I.e.,

- (Nakamura 1983) There exists an intermediate logic having DP but lacking EP. I.e., DP  $\neq$  EP.
- (S. 2013-15) There exists an intermediate logic having EP but lacking DP. I.e., EP ⇒ DP.

## Theorem (S.2013-15)

If L is closed under the rule:

$$\frac{A \lor (p(x) \to p(y))}{A} \quad (ZR)$$

where x, y and p are distinct and do not occur in A. Then, EP of **L** implies DP of **L**.

- Do  $H_* + WLPO$  and  $H_* + LLPO$  have H-DP and/or H-EP?
- H-DP ⇔ DP? H-EP ⇔ EP? This problem is known as Ono's problem P54.

Remark: In intermediate propositional logic, we have: H-DP  $\Leftrightarrow$  DP.

- There must be waiting us other axiom schemata arising from constructive theories which are interesting from the viewpoint of intermediate logics!
- There must be waiting us other phenomena in intermediate logics which are interesting from the view point of constructive theories!

# References

- Doorman, L. M., A note on the existence property for intuitionistic logic with function symbols, Zeitschrift f
  ür Mathematische Logik und Grundlagen der Mathematik 36(1990), 17–21.
- Gabbay, D., and de Jongh, D. H., Sequences of decidable and finitely axiomatizable intermediate logics with the disjunction property, J. Symbolic Logic 39(1974), 67–79.
- Kleene, S. C., Disjunction and existence under implication in elementary intuitionistic formalisms, J. Symbolic Logic 27(1962), 11–18. (An addendum, 28(1963), 154–156.)
- Komori, Y., Some results on the super-intuitionistic predicate logics, Reports on Mathematical Logic, No.15(1983), 13–31.
- Nakamura, T., Disjunction property for some intermediate predicate logics, ibid., 33–39.
- Ono, H., Some problems in intermediate predicate logics, ibid., No.21(1987), 55-67.
- Prawitz, D., Natural deduction. A proof-theoretical study, Acta Universitatis Stockholmiensis. Stockholm Studies in Philosophy, No. 3 Almqvist & Wiksell, Stockholm 1965. (Reprint: Dover Publications, 2006)
- Suzuki, N.-Y., A remark on the delta operation and the Kripke sheaf semantics in super-intuitionistic predicate logics, Bulletin of Section of Logic, University of Łódź, 25(1996), 21–28.
- Suzuki, N.-Y., A negative solution to Ono's problem P52: Existence and disjunction properties in intermediate predicate Logics, to appear.
- Troelstra, A. S., Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics, Vol. 344 (1973).