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Abstract

In 2007, Liu and Tanaka showed that for any uniform binary AND-OR tree
on the assignments that are independently distributed (ID), the
distributional complexity is achieved only if the assignments are also
identically distributed (IID).

We generalize Liu-Tanaka's result to uniform level-by-level k-branching
AND-OR tree. The proof technique is different from available ones. One
ingredient of our proof is a generalization of Suzuki-Niida's " fundamental
relationships between costs and probabilities”. Another ingredient of our
proof is a careful analysis of the algorithms involved.
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Game tree: T
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n =23k

k™ round

Round:

One level AND (A) node

followed by one level OR (V)
node.

Internal nodes:
A or V labeled.

External nodes (leaves):
1 or 0 labeled .
The number of leaves: 22k
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Game tree

We are interested in the class of Boolean functions represented by game
trees.

@ A game tree is a rooted tree in which each leaf (external node) has a
distinct input variable, the internal nodes are labeled by AND / OR.

@ A game tree is uniform if the internal nodes have same number of
children and the root-leaf paths are of same length.
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Boolean function

@ Boolean variables x1, xo, - - - , x, with unknown values
@ Given Boolean function f : {0,1}" — {0,1}

e Goal: evaluate f(x1,- -+ ,Xp).

Definition
The Boolean Decision tree model as a deterministic algorithm to compute
a Boolean function.
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Background

Example
Give a Boolean function f(a, b,c,d) = (a A b) V (c A d).

One of decision tree (algorithm) computing f.
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Background

Example
Give a Boolean function f(a, b,c,d) = (a A b) V (c A d). J

One of decision tree (algorithm) computing f.
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Game tree: Functions N )
Decision tree: Algorithm
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Deterministic Complexity: D(f)

@ The deterministic complexity of function f:
D(f) = mina max,, C(A,w).
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Deterministic Complexity: D(f)

@ The deterministic complexity of function f:
D(f) = mina max,, C(A,w).

Definition
The deterministic complexity D(f) of a function f(xi,- -, xs) is the
minimum complexity of any deterministic decision tree algorithm that

computes f.
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Let A be a deterministic algorithm and w an assignment to the leaves of
tree T2k.
(A,w) : the number of leaves queried by A computing Tx on w.
W : be the set of assignments.
pd : the probability of w over W with respect to distribution d.

The average complexity C(A, d) of a deterministic algorithm A on
assignments with distribution d is defined by

C(Ad)= > piC(Aw).
weWw

Let D be the set of distributions, and A(TX) the set of deterministic
algorithms computing tree TX. The distributional complexity P(TX)
computing tree T2k is defined by

ky .
P(TyY) = ?eagAerzl(rjr;) C(A,d).
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Algorithms and distributions

Directional Algorithms

Depth first Algorithms

independently distributed (ID)

independently and identically distributed (IID)

Theorem (Tarsi, 1983)
For TX, algorithm SOLVE is the optimal for solving tree. J
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Theorems

Theorem (Liu and Tanaka, 2007)
For T2k, P/D(Tzk) = P//D(Tzk).

Computability Theory and Foundations/of Mz
23

NN T S TS (U VN N[SET T WEPANVIT E q uilibriums of independent distributions on t



Background

Theorems

Theorem (Liu and Tanaka, 2007)
For T2k, P/D(Tzk) = P//D(T2k).

Theorem (Suzuki and Niida, 2014)

Suppose that r is a real number such that 0 < r < 1. Suppose that we
restrict ourselves to distributions such that the probability of the root is r.
Then, fOI’ Tzk, P/D(Tzk) = P//D(Tzk).

Suzuku-Niida change the problem into a Extremum Problem.
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Background

Theorems

Theorem (Liu and Tanaka, 2007)
For Tzk, P/D(TQk) = P//D(Tzk).

Theorem (Suzuki and Niida, 2014)

Suppose that r is a real number such that 0 < r < 1. Suppose that we
restrict ourselves to distributions such that the probability of the root is r.
Then, for Tzk, P/D(Tzk) = P//D(Tzk).

Suzuku-Niida change the problem into a Extremum Problem.

Theorem
For level-by-level uniform multi-branching tree T, Pip(T) = Pyp(T). J

We also keep the probability same.
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A generalization

ll. A generalization
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A generalization

Definition

We say that a finite branching tree T is a level-by-level uniform

multi-branching if

(1) T is an AND-OR tree.

(2) For all o and ¢’ on T, if |o| = |o'| then o has the same member of
children as ¢’ does. Note that we do not require that nodes from
different levels have the same number of children. )
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Getting more uniformity while increasing the cost

We now prove a technical lemma which is a generalization of Suzuki and
Niida "fundamental relationships between costs and probabilities”.

Lemma

Suppose that the distribution on T is IID with all leaves assigned
probability x and we follow a depth-first algorithm A. Then

(1) ps(x) is a strictly increasing function of x.

(2) ;ZET(; is strictly decreasing.

e (x)
(3) B o str
nonincreasing.

/
is strictly decreasing if o is not a leaf; and at leaves ;78 =0is
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Main Theorem

Theorem
For level-by-level uniform multi-branching tree T, Pip(T) = Pyp(T). J
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The Technique Lemma

Lemma
Given a ID distribution d, we find an depth first algorithm A and an IID
distribution d’ such that p,(d) = ps(d").

Corollary

Given a node o and a almost 1ID distribution d = (x1,x2,- -+ , Xp), then we
can find another d’, such that c(A,d’) > c(A, d) while keep the
probability p,(d) = py(d’).
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The theorem

Proof Idea: the one Step (The Technique Lemma)

()

—

@ One step change from almost IID to full IID (Lemma 2).

e C(A,d) < C(A,d') and p(A,d) = p(A,d).

@ inequality imply non maximnm, in other word, maximnm imply
equality.
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The Induction Step (The Technique Lemma)

AA-A

Xp et e X pp 99 T ss

[m]
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Proof.

We first show that P;p < Pjp. By the previous lemma, for any ID d,
there exists |ID d’ such that

rgin C(AD7 d) < C(SOLVE, dl) = PIID

D

for all depth-first algorithms Ap (the last equality is due to Tarsi [?]).
When we allow A to be non depth-first, the minimal value cannot increase,

thus we have
m/jn c(A,d) < c(SOLVE,d") < Pyp

hence
P/D(T) = mj]X mAin C(A, d) < P//D.

On the other hand, any IID is also ID, hence by logic

max min c(A, d) < maxmin(A, d),
d:lID A d:ID A

that 1S P D T)< P n. We are done. Computability Theory and Foundationgf E
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Open Questions

Question
What is the optimal algorithm for ID case? J
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The theorem

Thank you very much!
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