Equilibriums of independent distributions on uniform AND-OR trees

NingNing Peng (KengMeng NG and Kazuyuki Tanaka, Yang Yue)

Nanyang Technological University, Singapore nnpeng@ntu.edu.sg

Computability Theory and Foundations of Mathematics, Sep. 7 - 11, 2015

Computability Theory and Foundations of Ma

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

3 Getting more uniformity while increasing the cost

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

Computability Theory and Foundations of Ma

23

In 2007, Liu and Tanaka showed that for any uniform binary AND-OR tree on the assignments that are independently distributed (ID), the distributional complexity is achieved only if the assignments are also identically distributed (IID).

We generalize Liu-Tanaka's result to uniform level-by-level *k*-branching AND-OR tree. The proof technique is different from available ones. One ingredient of our proof is a generalization of Suzuki-Niida's "fundamental relationships between costs and probabilities". Another ingredient of our proof is a careful analysis of the algorithms involved.

Computability Theory and Foundations of Ma

I. Background

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

Computability Theory and Foundations of Ma on ι / 23

Game tree: T_2^k

Computability Theory and Foundations of Ma

Game tree

We are interested in the class of Boolean functions represented by game trees.

• A game tree is a rooted tree in which each leaf (external node) has a distinct input variable, the internal nodes are labeled by AND / OR.

Computability Theory and Foundations of Ma

• A game tree is uniform if the internal nodes have same number of children and the root-leaf paths are of same length.

Boolean function

- Boolean variables x_1, x_2, \dots, x_n with unknown values
- Given Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$
- Goal: evaluate $f(x_1, \dots, x_n)$.

Definition

The Boolean Decision tree model as a deterministic algorithm to compute a Boolean function.

23

Example

Give a Boolean function $f(a, b, c, d) = (a \land b) \lor (c \land d)$.

One of decision tree (algorithm) computing f.

Example

Give a Boolean function $f(a, b, c, d) = (a \land b) \lor (c \land d)$.

One of decision tree (algorithm) computing f.

Game tree: **Functions**

Decision tree: Algorithm

23

Deterministic Complexity: D(f)

• The deterministic complexity of function f: $D(f) = \min_A \max_{\omega} C(A, \omega).$

Deterministic Complexity: D(f)

• The deterministic complexity of function f: $D(f) = \min_A \max_{\omega} C(A, \omega).$

Definition

The deterministic complexity D(f) of a function $f(x_1, \dots, x_n)$ is the minimum complexity of any deterministic decision tree algorithm that computes f.

Background

Let A be a deterministic algorithm and ω an assignment to the leaves of tree T_2^k .

- (A, ω) : the number of leaves queried by A computing T_2^k on ω .
 - $\mathcal W$: be the set of assignments.
 - p_{ω}^{d} : the probability of ω over \mathcal{W} with respect to distribution d.

The average complexity C(A, d) of a deterministic algorithm A on assignments with distribution d is defined by

$$C(A,d) = \sum_{\omega \in \mathcal{W}} p_{\omega}^{d} C(A,\omega).$$

Let \mathcal{D} be the set of distributions, and $\mathcal{A}(T_2^k)$ the set of deterministic algorithms computing tree T_2^k . The **distributional complexity** $P(T_2^k)$ computing tree T_2^k is defined by

$$P(T_2^k) = \max_{d \in \mathcal{D}} \min_{A \in \mathcal{A}(T_2^k)} C(A, d).$$

Algorithms and distributions

- Directional Algorithms
- Depth first Algorithms
- independently distributed (ID)
- independently and identically distributed (IID)

Theorem (Tarsi, 1983)

For T_2^k , algorithm SOLVE is the optimal for solving tree.

Theorems

Theorem (Liu and Tanaka, 2007) For T_2^k , $P_{ID}(T_2^k) = P_{IID}(T_2^k)$.

NingNing Peng (KengMeng NG and Kazuyu Equilibriums of independent distributions on ι / 23

Theorems

Theorem (Liu and Tanaka, 2007) For T_2^k , $P_{ID}(T_2^k) = P_{IID}(T_2^k)$.

Theorem (Suzuki and Niida, 2014)

Suppose that r is a real number such that 0 < r < 1. Suppose that we restrict ourselves to distributions such that the probability of the root is r. Then, for T_2^k , $P_{ID}(T_2^k) = P_{IID}(T_2^k)$.

Suzuku-Niida change the problem into a Extremum Problem.

Theorems

Theorem (Liu and Tanaka, 2007) For T_2^k , $P_{ID}(T_2^k) = P_{IID}(T_2^k)$.

Theorem (Suzuki and Niida, 2014)

Suppose that r is a real number such that 0 < r < 1. Suppose that we restrict ourselves to distributions such that the probability of the root is r. Then, for T_2^k , $P_{ID}(T_2^k) = P_{IID}(T_2^k)$.

Suzuku-Niida change the problem into a Extremum Problem.

Theorem

For level-by-level uniform multi-branching tree T, $P_{ID}(T) = P_{IID}(T)$.

We also keep the probability same.

NingNing Peng (KengMeng NG and Kazuyu Equilibriums of independent distributions on t / 23

II. A generalization

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

Computability Theory and Foundations of Ma on ι / 23

Definition

We say that a finite branching tree T is a *level-by-level uniform multi-branching* if

- (1) T is an AND-OR tree.
- (2) For all σ and σ' on T, if $|\sigma| = |\sigma'|$ then σ has the same member of children as σ' does. Note that we do not require that nodes from different levels have the same number of children.

Computability Theory and Foundations of Ma

We now prove a technical lemma which is a generalization of Suzuki and Niida "fundamental relationships between costs and probabilities".

Lemma

Suppose that the distribution on T is IID with all leaves assigned probability \times and we follow a depth-first algorithm A. Then

(1) $p_{\sigma}(x)$ is a strictly increasing function of x.

(2)
$$\frac{c_{\sigma}(x)}{p_{\sigma}(x)}$$
 is strictly decreasing.

(3) $\frac{c'_{\sigma}(x)}{p'_{\sigma}(x)}$ is strictly decreasing if σ is not a leaf; and at leaves $\frac{c'_{\sigma}(x)}{p'_{\sigma}(x)} = 0$ is nonincreasing.

Main Theorem

Theorem

For level-by-level uniform multi-branching tree T, $P_{ID}(T) = P_{IID}(T)$.

Computability Theory and Foundations of Ma

23

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

The Technique Lemma

Lemma

Given a ID distribution d, we find an depth first algorithm A and an IID distribution d' such that $p_{\sigma}(d) = p_{\sigma}(d')$.

Corollary

Given a node σ and a almost IID distribution $d = (x_1, x_2, \dots, x_n)$, then we can find another d', such that $c(A, d') \ge c(A, d)$ while keep the probability $p_{\sigma}(d) = p_{\sigma}(d')$.

The theorem

Proof Idea: the one Step (The Technique Lemma)

- One step change from almost IID to full IID (Lemma 2).
- $C(A, d) \le C(A, d')$ and p(A, d) = p(A, d').
- inequality imply non maximnm, in other word, maximnm imply equality.

The theorem

The Induction Step (The Technique Lemma)

/ 23

Proof.

We first show that $P_{ID} \leq P_{IID}$. By the previous lemma, for any ID d, there exists IID d' such that

$$\min_{A_D} c(A_D, d) \leq c(SOLVE, d') = P_{IID}$$

for all depth-first algorithms A_D (the last equality is due to Tarsi [?]). When we allow A to be non depth-first, the minimal value cannot increase, thus we have

$$\min_{A} c(A, d) \leq c(SOLVE, d') \leq P_{IID}$$

hence

$$P_{ID}(T) = \max_{d} \min_{A} c(A, d) \leq P_{IID}.$$

On the other hand, any IID is also ID, hence by logic

$$\max_{d:IID} \min_{A} c(A, d) \leq \max_{d:ID} \min_{A} (A, d),$$

that is, $P_{IID}(T) < P_{ID}$. We are done. NingNing Peng (KengMeng NG and Kazuyu Equilibriums of independent distributions on u

Computability Theory and Foundations of M

Open Questions

Question

What is the optimal algorithm for ID case?

NingNing Peng (KengMeng NG and Kazuyu Equilibriums of independent distributions on ι / 23

References

Michael Tasi

Optimal Search on Some Game Trees. Journal of the ACM, Vol.30 (3), PP. 389-396, 1983.

 Liu C.G., and Tanaka K.: Eigen-Distribution on Random Assignments for Game Trees. Information Processing Letters, 104(2): 73-77, 2007.

Toshio Suzuki and Yoshinao Niida Equilibrium Points of an AND-OR Tree: under Constraints on Probability. arXiv:1401.8175.

Computability Theory and Foundations of Ma

Thank you very much!

NingNing Peng (KengMeng NG and Kazuyu<mark>Equilibriums of independent distributions on ι</mark>

Computability Theory and Foundations of Ma