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If dimy X = dimpX we refer to X as regular and write dimX.
A and B are mutually regular if both are regular and

C(AIn,Bln)

lim

n

exists.
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A directed premetric

Definition (The d-metric)

d(X = Y) = limsup W

d(X,Y) = max{d(X — Y),d(Y = X)}.

X ~g Y i=d(X,Y)=0.

d is a metric on the d-equivalence classes.
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Definition
Let a € [O, 1] and X = xgxiXo. ..

aX = XoX1 ... Xj, 000... OX,‘1+1X,'1+2 500 X,'2000 500 0Xi2+1 500

Where |x,-j+1 ...x,-j+1000...0| =/j+1,and

|X,'].+1 50 .X,'].+1 |

aX is the a-dilution of X.

=la(j+1)].
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Properties of Dilution

@ 0X =0000--- ~4 any real of dimension 0,
©Q If X is regular, then aX is regular,

Q dim(aX) = adim(X),

Q a(BX) =4 (aB)X,

Q daX —aY)=adX —=Y),

0 if o > 8,
(8 —a)dim X otherwise,

@ The map a +— aX is a continuous map from [0, 1] into 2N
under the d-topology.

Q d(aX — BX) = {
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Compression

Theorem (Binns, Nicholson)

For every regular X of dimension « there is a unique (up to
d-equivalence) Y of dimension 1, such that X ~4 a/Y.

We let X = my7p13... where |7;| = i. Then we define

@ v =T
® Yip1 = (i1 |71, 72, )",

where the notation (7j1 | 71, 72, ... 7;)* denotes a program of
minimal length that outputs 7,1 given 71, 72, 73, ... 7; @s input.
NOWWGletY:’W"YQ’Y(;.... L]
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Proof cont.

Proof (very basic sketch).

Let Yi =y1v2v3...7vi, and Xj = my1er3 ... 7
We show that:

@ |Xj| = O()

o |Yi| = C(X) £ O(ilog ).

@ dlaY—-X)=0

@ dmY =1

@ Asdim(aY) = a = dim(X), this implies d(X — aY) =0
and aY ~g4 X.
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Cloir 1Y)+ CYi|X) > Clrig | %) — o)
= sl = o).

But C(Y; | Xi) = C(Yi, X)) — C(X) + o(i?)
= C(Y) — C(X) £ o).

C(yix1 | Vi) + C(Yi) — C(Xi) = |yig1| = o(i?)
= C(Yit1) = |vie1] + C(X) £ o(i?)
= |Yit1| £ 0(i?)
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Given any regular real X of dimension o > 0, there is a
1-random real R such that X ~4 aR.

Lemma (Kucera, Gac & Merkle, Mihailovic)

There is a partial computable functional ® on 2N with the
properties:
@ Forevery Y € 2 there is a Martin-L6f random R such that
o =Y.
© There is a computable function g such that g(n) bounds
the use of R in calcu/ating YIn.

O limsup 9 <




Proof cont.

Given X of dimension «, construct Y of dimension 1 such that
X ~4 aY. Now take R as in Lemma for Y. To describe Y [ n
given R | n we need only an extra g(n) — n bits. Thus
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Proof cont.

Given X of dimension «, construct Y of dimension 1 such that
X ~4 aY. Now take R as in Lemma for Y. To describe Y [ n
given R | n we need only an extra g(n) — n bits. Thus

C(YIn|Rn)
n
g(n)—n+0O(1)
n

g(n)

<limsup =—= — 1
P n

d(R— Y)=Ilimsup
n

< limsup
n

<0

AsdimR =1 =dim Y, we have also that d(Y —+ R) = 0 and
Y ~q R. Finally aR ~4 aY ~4 X as required. Ol




Convex combinations

We can pad a real X with bits from another real Y:
Letr e [0,1]and X = xox1X2..., Y = YoViyo. ..
Define

I’[X, Y] =XoX1 .- X Yoy - Vi Xi+1Xip+2 - X Vj+1 - VipXip41 - - -
Where ’ka+1 o X Vi1 - - 'yfk+1‘ =k+1,and

Ikt1 = [r(k+1)].

Definition

The convex hull of X and Y is

H(X,Y) ={r[aX,aY]:r,ae[0,1]}

closed under d-equivalence.




The convex hull of mutually random reals R and S

X =r[aR,as].




The distance function

d(B—X)=0, d(X = B)=b, d(X - A =d(A— X) = a,
d(B— A =a, d(A— B)=a+b.

R S




/AB = d(A, B)
R, A s

PPN >




Projections: Proj, Y := sup{a: d(Y — aX) =0}




Other hulls: A B € H(R, S).
B=1[R S, A=&[R S|




What kind of geometry can (A, B) exhibit?

The previous examples have planar hulls. They can be
isometrically embedded in H(R, S).
Are all hulls planar? No.



Other hulls: Arbitrary mutually regular A and B

Let A and B be mutually regular reals of dimension 1. Then A
and B form a coherent pair if

JAB — (1-0)(1 —7')’

1—01

where o = Proj,B and 7 = ProjgA.

V.

‘H(A, B) is planar if an only if A and B are coherent.
Not all mutually regular reals are coherent.




Other hulls: Arbitrary mutually regular A and B

Let A and B be mutually regular reals of dimensions a and b
respectively. Then A and B form a coherent pair if

b— ac)(a— br)

_(
“AB = ab(1—o7) '’

where o = Proj,B and 7 = ProjgA.

H(A, B) is planar if an only if A and B are coherent.
Not all mutually regular reals are coherent.




Not all A B are coherent

Let R=riror3rg ... ... be arandom real. Let
A=ryhly...lhy...

B=ryrsrg...r3,...
Both A and B are random and so are dimension 1. But
@ /AB=d(B— A)=2/3
@ ProjgA=0
@ ProjyB=0
1-0)(1-0
o 2/3 2 (=000 _ 1




Other directions

@ Given a coherent pair A and B, does there exist a pair of
mutually random reals R, S such that

H(A,B) C H(R, S)?



Other directions

@ Given a coherent pair A and B, does there exist a pair of
mutually random reals R, S such that

H(A,B) C H(R, S)?

@ Given a mutually regular pair A, B is there a curve of length
d(A, B) connecting A and B?



Other directions

@ Given a coherent pair A and B, does there exist a pair of
mutually random reals R, S such that

H(A,B) C H(R, S)?

@ Given a mutually regular pair A, B is there a curve of length
d(A, B) connecting A and B?

@ Given a mutually regular pair A and B, does there exist a
(unique?) C of minimal dimension such that
d(B,C — A) = 0? Where

C(AIn|BIn& C|n)

d(B,C — A) :=limsup
n n



Other directions

@ Given a coherent pair A and B, does there exist a pair of
mutually random reals R, S such that

H(A,B) C H(R, S)?

@ Given a mutually regular pair A, B is there a curve of length
d(A, B) connecting A and B?

@ Given a mutually regular pair A and B, does there exist a
(unique?) C of minimal dimension such that
d(B,C — A) = 0? Where

C(AIn|BIn& C|n)

d(B,C — A) :=limsup
n n



Arigatou gozaimasu
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