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Effective Dimensions

Definition
Effective Hausdorff dimension:

dimH(X ) = lim inf
n

C(X �n)

n
.

Effective packing dimension:

dimp(X ) = lim sup
n

C(X �n)

n
.

If dimHX = dimpX we refer to X as regular and write dimX .
A and B are mutually regular if both are regular and

lim
n

C(A�n,B �n)

n
exists.



Effective Dimensions

Definition
Effective Hausdorff dimension:

dimH(X ) = lim inf
n

C(X �n)

n
.

Effective packing dimension:

dimp(X ) = lim sup
n

C(X �n)

n
.

If dimHX = dimpX we refer to X as regular and write dimX .
A and B are mutually regular if both are regular and

lim
n

C(A�n,B �n)

n
exists.



Effective Dimensions

Definition
Effective Hausdorff dimension:

dimH(X ) = lim inf
n

C(X �n)

n
.

Effective packing dimension:

dimp(X ) = lim sup
n

C(X �n)

n
.

If dimHX = dimpX we refer to X as regular and write dimX .
A and B are mutually regular if both are regular and

lim
n

C(A�n,B �n)

n
exists.



Effective Dimensions

Definition
Effective Hausdorff dimension:

dimH(X ) = lim inf
n

C(X �n)

n
.

Effective packing dimension:

dimp(X ) = lim sup
n

C(X �n)

n
.

If dimHX = dimpX we refer to X as regular and write dimX .
A and B are mutually regular if both are regular and

lim
n

C(A�n,B �n)

n
exists.



A directed premetric

Definition (The d-metric)

d(X → Y ) := lim sup
n

C(Y �n |X �n)

n
.

d(X ,Y ) := max{d(X → Y ),d(Y → X )}.

X ∼d Y := d(X ,Y ) = 0.

Theorem
d is a metric on the d-equivalence classes.
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Some Results:

d induces a path-connected topology on the set of regular
reals.

The set of regular reals is topologically complete under d .

The set of regular reals contains no compact
neighbourhoods under d .

If dim X = dim Y , then d(X → Y ) = d(Y → X ).
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Dilutions

Definition
Let α ∈ [0,1] and X = x0x1x2 . . .

αX := x0x1 . . . xi1000 . . . 0xi1+1xi1+2 . . . xi2000 . . . 0xi2+1 . . .

Where |xij+1 . . . xij+1000 . . . 0| = j + 1, and

|xij+1 . . . xij+1 | = bα(j + 1)c.

αX is the α-dilution of X .



Properties of Dilution

1 0X = 0000 · · · ∼d any real of dimension 0,
2 If X is regular, then αX is regular,
3 dim(αX ) = α dim(X ),
4 α(βX ) 'd (αβ)X ,
5 d(αX → αY ) = αd(X → Y ),

6 d(αX → βX ) =

{
0 if α > β,
(β − α) dim X otherwise,

7 The map α 7→ αX is a continuous map from [0,1] into 2N

under the d-topology.
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Compression

Theorem (Binns, Nicholson)
For every regular X of dimension α there is a unique (up to
d-equivalence) Y of dimension 1, such that X 'd αY.

Proof.
We let X = τ1τ2τ3 . . . where |τi | = i . Then we define

γ1 = τ1

γi+1 = (τi+1 |τ1, τ2, . . . τi)
∗,

where the notation (τi+1 |τ1, τ2, . . . τi)
∗ denotes a program of

minimal length that outputs τi+1 given τ1, τ2, τ3, . . . τi as input.
Now we let Y = γ1γ2γ3 . . . .
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Proof cont.

Proof (very basic sketch).
Let Yi = γ1γ2γ3 . . . γi , and Xi = τ1τ2τ3 . . . τi
We show that:

|Xi | = O(i2)

|Yi | = C(Xi)±O(i log i).
d(αY → X ) = 0
dim Y = 1
As dim(αY ) = α = dim(X ), this implies d(X → αY ) = 0
and αY ∼d X .
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dim Y = 1 (Proof sketch)

Proof.

C(γi+1 |Yi) + C(Yi |Xi) > C(τi+1 |Xi)− o(i2)

= |γi+1| − o(i2).

But C(Yi |Xi) = C(Yi ,Xi)− C(Xi)± o(i2)

= C(Yi)− C(Xi)± o(i2).

∴ C(γi+1 |Yi) + C(Yi)− C(Xi) > |γi+1| ± o(i2)

⇒ C(Yi+1) > |γi+1|+ C(Xi)± o(i2)

= |Yi+1| ± o(i2)
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Randomness and Complexity

Theorem
Given any regular real X of dimension α > 0, there is a
1-random real R such that X ∼d αR.

Lemma (Kučera, Gác & Merkle, Mihailović)

There is a partial computable functional Φ on 2N with the
properties:

1 For every Y ∈ 2N there is a Martin-Löf random R such that
ΦR = Y.

2 There is a computable function g such that g(n) bounds
the use of R in calculating Y �n.

3 lim sup g(n)
n 6 1.
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Proof cont.

Proof.
Given X of dimension α, construct Y of dimension 1 such that
X ∼d αY . Now take R as in Lemma for Y . To describe Y �n
given R �n we need only an extra g(n)− n bits. Thus

d(R → Y ) = lim sup
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C(Y �n |R �n)
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As dim R = 1 = dim Y , we have also that d(Y → R) = 0 and
Y ∼d R. Finally αR ∼d αY ∼d X as required.
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Convex combinations

We can pad a real X with bits from another real Y :
Let r ∈ [0,1] and X = x0x1x2 . . . , Y = y0y1y2 . . .
Define

r [X ,Y ] = x0x1 . . . xi1y0y1 . . . yj1xi1+1xi1+2 . . . xi2yj1+1 . . . yj2xi2+1 . . .

Where |xik+1 . . . xik+1yik+1 . . . yik+1 | = k + 1, and

ik+1 = br(k + 1)c.

Definition
The convex hull of X and Y is

H(X ,Y ) = {r [αX , αY ] : r , α ∈ [0,1]}

closed under d-equivalence.



The convex hull of mutually random reals R and S
X = r[αR, αS].

bRR b SS

b

OO

b
XX

b̂
X̂X

bαRαR b αSαS

1 − r r

Figure: X = r [αX , αY ].



The distance function

d(B → X ) = 0, d(X → B) = b, d(X → A) = d(A→ X ) = a,
d(B → A) = a, d(A→ B) = a + b.

bRR b SS

b

OO

b

BB

b

XX
b AA

b

a

Figure: X = r [αX , αY ].



Angles

∠AB = d(Â, B̂)
bRR b SS

b

OO

b̂
B̂B

b̂
ÂA

b AA

bBB

Figure: X = r [αX , αY ].



Projections: ProjX Y := sup{α : d(Y → αX ) = 0}
τ = ProjBA σ = ProjAB.

bRR b SS

b

OO

b BB

b AA

b̂
ÂA

b̂
B̂B

b σAσA

b τBτB

Figure: X = r [αX , αY ].



Other hulls: A,B ∈ H(R,S).

B = 1
2 [R,S], A = 1

10 [R,S].

bRR b SS

b

OO

b
BB

b
AA

Figure: X = r [αX , αY ].



Question
What kind of geometry can H(A,B) exhibit?

The previous examples have planar hulls. They can be
isometrically embedded in H(R,S).
Are all hulls planar? No.



Other hulls: Arbitrary mutually regular A and B

Definition
Let A and B be mutually regular reals of dimension 1. Then A
and B form a coherent pair if

∠AB =
(1− σ)(1− τ)

1− στ ,

where σ = ProjAB and τ = ProjBA.

Theorem
H(A,B) is planar if an only if A and B are coherent.

Theorem
Not all mutually regular reals are coherent.



Other hulls: Arbitrary mutually regular A and B

Definition
Let A and B be mutually regular reals of dimensions a and b
respectively. Then A and B form a coherent pair if

∠AB =
(b − aσ)(a− bτ)

ab(1− στ)
,

where σ = ProjAB and τ = ProjBA.

Theorem
H(A,B) is planar if an only if A and B are coherent.

Theorem
Not all mutually regular reals are coherent.



Not all A B are coherent

Proof.
Let R = r1r2r3r4 . . . rn . . . be a random real. Let

A = r0r2r4 . . . r2n . . .

B = r0r3r6 . . . r3n . . .

Both A and B are random and so are dimension 1. But
∠AB = d(B → A) = 2/3
ProjBA = 0
ProjAB = 0

2/3 6= (1−0)(1−0)
1−0 = 1.



Other directions

Given a coherent pair A and B, does there exist a pair of
mutually random reals R,S such that

H(A,B) ⊆ H(R,S)?

Given a mutually regular pair A, B is there a curve of length
d(A,B) connecting A and B?
Given a mutually regular pair A and B, does there exist a
(unique?) C of minimal dimension such that
d(B,C → A) = 0? Where

d(B,C → A) := lim sup
n

C(A�n |B �n ⊕ C �n)

n
.
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Arigatou gozaimasu
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