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1 Reverse Mathematics

Subsystems of second order arithmetic Z,

system characteristic axiom
RCAy* | recursive comprehension axiom and Y3-induction
RCAq | recursive comprehension axiom and X{-induction

WKL weak Konig’s lemma

ACAq arithmetical comprehension axiom
ATRg arithmetical transfinite recursion
I11-CAq [11-comprehension axiom

The main stream of Reverse Mathematics aims at

e formalizing mathematical theorems in the weak subsystem RCAq
of second order arithmetic Zo,

e and classifying mathematical theorems into several subsystems of
/> in terms of set existence axioms exactly needed to prove them

(cf. Simpson, [7]).
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RM and structural theorems for groups

Theorem 1.1.

. Over RCAj, RCAp is equivalent to the fundamental theorem of finitely
generated countable abelian groups (18c) (Hatzikiriakou (1989), [5]).

. Over RCAp, ACAq is equivalent to the statement that every countable
abelian group is the direct sum of a torsion group and a torsion-free
group (Friedman, Simpson, and Smith (1983), [4]).

. Over RCAq, ATRg is equivalent to the Ulm’s theorem (1933) for countable
abelian groups ( - ).

. Over RCAy, ITI;1-CAy is equivalent to the statement that every countable
abelian group is the direct sum of a divisible group and a reduced group

(-)-
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2 Artin-Wedderburn theorem for rings

Definition 1. A ring R is said to be simple if
(Va € R)(Vb e R\ {0gr})(3z,y € R)(a = xby).
If a ring R is simple then R does not have any non-trivial proper ideal.

Definition 2. A ring R is said to be semisimple if R is isomorphic to
the finite product of simple rings.

Definition 3. A ring R is said to be left Artinian if there does not exists
an infinite strictly descending chain of left ideals

Ih>LD>---2I,0---.1
Definition 4. The Jacobson radical Jac(R) of a ring R is defined as
Jac(R) ={re R: (Va € R)(3b € R)[(1gr — ra)b = 1R]}.

11t is interesting to consider the more strong chain condition that there does not
exists an infinite sequence of elements (a; : i« € N) such that (Vi)(a;+1 € (a;) ANa; &

(ait1))-
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Theorem 2.1 (Wedderburn (1907)-Artin (1927)). Let R be a ring. The
following are equivalent.

. R is left Artinian and Jac(R) = {Or}.

. R is semisimple, i.e., there exists simple rings Ry, R1,..., R, such that
R=EZRy®R1D---PR,.

. R is isomorphic to the finite product of matrix rings over division rings,

i.e., there exists division rings Dy, D1, ..., D,, and positive integers mg, m1,. ..

such that
R = Mpy, (D0> D M, (Dl) DD M, (Dn)

e Wedderburn’s part is 2 « 3.

e Artin’s part is 1 < 2.
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3 Artin-Wedderburn theorem and WKL,

Proposition 3.1. Wedderburn’s part of the theorem for countable rings
is provable in RCAy.

Theorem 3.2 (Conidis (2012), [1,2]). Every Artinian commutative ring
is isomorphic to a finite direct product of local Artinian commutative
rings.

The result above is based on the result below.

Theorem 3.3 (Downey, Lemmp, and Mileti (2007), [3]). Over RCAy,
WKL, is equivalent to the statement that every commutative ring which
is not a field has a non-trivial proper ideal.

Corollary 3.4. Artin’s part of the theorem for countable rings implies
WKLO over RCAO

It is likely that WKLy proves Artin’s part.
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Summary; RM for Artin-Wedderburn theorem and
Rees theorem

theorem date | classified into
Wedderburn’s theorem | 1907 RCAq
Artin’s generalization | 1927 ~ WKL
Rees theorem 1940 ~ ACAq

e “The algebraists began to analyze Wedderburn’s theorem and tried
to find an even more abstract back ground.” (Artin)

e “The Rees Theorem, strongly motivated by Wedderburn-Artin The-
orem for rings...” (Howie, [6])

More abstract theories we explore, stronger axioms are needed to
make statements nonvacuous.
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4 Rees theorem for semigroups

For convenience, we assume that a semigroup does not contain the 0-
element.

Definition 5. A semigroup S is said to be simple if (Va,b € S)(Jz,y €
S)(a = xby). If a semigroup S is simple then S does not have any
non-trivial proper ideal.

Definition 6. We define an order on the set of idempotents of a semi-
group as [ < e << ef = fe = f. A semigroup is said to be complete if
there exists a minimal idempotent with respect to the order.?

Definition 7. Let I, A be non-empty sets, GG be a group, and P : AxI —
G. The Rees matriz semigroup M (G; I, A, P) is the set I x G x A together
with the multiplication (¢, g, ) - (4, h, u) = (4, gPx;h, p).

Theorem 4.1 (Rees (1940)). If a semigroup S is simple and complete
then there exist non-empty sets I, A, a group G, and P : A x I — G such
that S = M(G; I, A, P), and vice varsa.

2This can be seen as a kind of chain condition.
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5 Formalizing the proof of Rees theorem in
ACAq

Definition 8. The following is defined in RCAg. Let S be a countable
semigroup. A binary relation £ on S is said to be the left equivalence if

L={(a,b) e SxS:3Fr,ye S)a=zxzbANb=ya)}.

The right equivalence R is defined similarly. Note that the condition of
the right-hand-side is X9.
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Lemma 5.1. The following are equivalent over RCA,.

1. ACAy.
2. Let o(z,y) € X0 be an equivalence relation on a set A C N, i.e.,
o (Vac A)(p(a,a)),
o (Va,b e A)(p(a,b) — ¢(b,a)),
e (VYa,b,ce A)(p(a,b) N p(b,c) — p(a,c)).
Then there exists the set of all representatives A* C A, i.e.,
o (Vaec A)(Tbe A*)(p(a,b)),
o (Va,be A")(p(a,b) — a=0>).
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Proposition 5.2. ACAq proves Rees theorem for countable semigroups.

Proof.

e Take an element a € S and let G = {x € S : xLa A xRa}. This forms a
group by Green’s lemma (which is provable in RCAy).

e By the previous lemma, let A, I be the sets of all representatives of left
and right equivalence respectively.

e Take functions r : I — S such that (Vi € I)(¢Rr; Ar;La) and ¢ : A — S
such that (VA € A)(ALgx A gy Ra). Let Py; = qar;.

It follows that S = M (G; I, A, P). ]

0-11



6 Exploration for reversal

Lemma 6.1 (Simpson, [7]). The following are equivalent over RCAy.

. ACA.

. For any injection a : N — N, there exists the image of «

fma = {j : (3i)(ali) = 5)}.

Proposition 6.2. The following is provable in RCAgy. Assume Rees
theorem for countable semigroups. Then for any simple and complete
semigroup S, the left equivalence of S exists.

Proof. (i,g9,),(j,h,u) € M(G; I, A, P) are left equivalent if and only if
A= Ll. []

To show that Rees theorem implies ACA, it is enough to construct
simple and complete semigroup whose left equivalence encodes the image
of given injection o : N — N.
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Theorem 6.3. Let o : N — N be an injection. In RCAy we can construct

. a complete semigroup whose left equivalence encodes the image of «.
. a simple semigroup whose left equivalence encodes the image of «.

. a simple and complete magma M whose left equivalence encodes the
image of .

Remark 6.4. A set with a binary operation is said to be a magma.
The binary operation need not to satisty associativity. The notions of
simplicity, completeness, and left equivalence can be extended to magmas
naturally. Although the left equivalence of a magma need not to be
equivalent relation.
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Summary; partial results for reversal of Rees theorem

Finding a “semigroup” which encodes the image of given injection with...

simplicity | completeness | associativity
yes no yes v
no yes yes v
yes yes no v
yes yes yes WANTED
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