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1 Reverse Mathematics

Subsystems of second order arithmetic Z2

system characteristic axiom
RCA0

∗ recursive comprehension axiom and Σ0
0-induction

RCA0 recursive comprehension axiom and Σ0
1-induction

WKL0 weak König’s lemma
ACA0 arithmetical comprehension axiom
ATR0 arithmetical transfinite recursion

Π1
1-CA0 Π1

1-comprehension axiom

The main stream of Reverse Mathematics aims at

• formalizing mathematical theorems in the weak subsystem RCA0

of second order arithmetic Z2,

• and classifying mathematical theorems into several subsystems of
Z2 in terms of set existence axioms exactly needed to prove them
(cf. Simpson, [7]).
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RM and structural theorems for groups

Theorem 1.1.

1. Over RCA∗
0 , RCA0 is equivalent to the fundamental theorem of finitely

generated countable abelian groups (18c) (Hatzikiriakou (1989), [5]).

2. Over RCA0, ACA0 is equivalent to the statement that every countable
abelian group is the direct sum of a torsion group and a torsion-free
group (Friedman, Simpson, and Smith (1983), [4]).

3. Over RCA0, ATR0 is equivalent to the Ulm’s theorem (1933) for countable
abelian groups ( - ).

4. Over RCA0, Π1
1-CA0 is equivalent to the statement that every countable

abelian group is the direct sum of a divisible group and a reduced group
( - ).
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2 Artin-Wedderburn theorem for rings

Definition 1. A ring R is said to be simple if

(∀a ∈ R)(∀b ∈ R \ {0R})(∃x, y ∈ R)(a = xby).

If a ring R is simple then R does not have any non-trivial proper ideal.

Definition 2. A ring R is said to be semisimple if R is isomorphic to
the finite product of simple rings.

Definition 3. A ring R is said to be left Artinian if there does not exists
an infinite strictly descending chain of left ideals

I0 ) I1 ) · · · ) In ) · · · .1

Definition 4. The Jacobson radical Jac(R) of a ring R is defined as

Jac(R) = {r ∈ R : (∀a ∈ R)(∃b ∈ R)[(1R − ra)b = 1R]}.

1It is interesting to consider the more strong chain condition that there does not
exists an infinite sequence of elements 〈ai : i ∈ N〉 such that (∀i)(ai+1 ∈ (ai) ∧ ai 6∈
(ai+1)).
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Theorem 2.1 (Wedderburn (1907)-Artin (1927)). Let R be a ring. The
following are equivalent.

1. R is left Artinian and Jac(R) = {0R}.
2. R is semisimple, i.e., there exists simple rings R0, R1, . . . , Rn such that

R ∼= R0 ⊕ R1 ⊕ · · · ⊕ Rn.

3. R is isomorphic to the finite product of matrix rings over division rings,
i.e., there exists division rings D0, D1, . . . , Dn and positive integers m0,m1, . . . , mn

such that

R ∼= Mm0(D0) ⊕ Mm1(D1) ⊕ · · · ⊕ Mmn(Dn).

• Wedderburn’s part is 2 ↔ 3.

• Artin’s part is 1 ↔ 2.
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3 Artin-Wedderburn theorem and WKL0

Proposition 3.1. Wedderburn’s part of the theorem for countable rings
is provable in RCA0.

Theorem 3.2 (Conidis (2012), [1,2]). Every Artinian commutative ring
is isomorphic to a finite direct product of local Artinian commutative
rings.

The result above is based on the result below.

Theorem 3.3 (Downey, Lemmp, and Mileti (2007), [3]). Over RCA0,
WKL0 is equivalent to the statement that every commutative ring which
is not a field has a non-trivial proper ideal.

Corollary 3.4. Artin’s part of the theorem for countable rings implies
WKL0 over RCA0.

It is likely that WKL0 proves Artin’s part.
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Summary; RM for Artin-Wedderburn theorem and
Rees theorem

theorem date classified into
Wedderburn’s theorem 1907 RCA0

Artin’s generalization 1927 ≈ WKL0

Rees theorem 1940 ≈ ACA0

• “The algebraists began to analyze Wedderburn’s theorem and tried
to find an even more abstract back ground.” (Artin)

• “The Rees Theorem, strongly motivated by Wedderburn-Artin The-
orem for rings...” (Howie, [6])

More abstract theories we explore, stronger axioms are needed to
make statements nonvacuous.
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4 Rees theorem for semigroups

For convenience, we assume that a semigroup does not contain the 0-
element.

Definition 5. A semigroup S is said to be simple if (∀a, b ∈ S)(∃x, y ∈
S)(a = xby). If a semigroup S is simple then S does not have any
non-trivial proper ideal.

Definition 6. We define an order on the set of idempotents of a semi-
group as f ≤ e ⇔ ef = fe = f . A semigroup is said to be complete if
there exists a minimal idempotent with respect to the order.2

Definition 7. Let I, Λ be non-empty sets, G be a group, and P : Λ×I →
G. The Rees matrix semigroup M(G; I, Λ, P ) is the set I×G×Λ together
with the multiplication (i, g, λ) · (j, h, µ) = (i, gPλjh, µ).

Theorem 4.1 (Rees (1940)). If a semigroup S is simple and complete
then there exist non-empty sets I,Λ, a group G, and P : Λ×I → G such
that S ∼= M(G; I, Λ, P ), and vice varsa.

2This can be seen as a kind of chain condition.
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5 Formalizing the proof of Rees theorem in
ACA0

Definition 8. The following is defined in RCA0. Let S be a countable
semigroup. A binary relation L on S is said to be the left equivalence if

L = {(a, b) ∈ S × S : (∃x, y ∈ S)(a = xb ∧ b = ya)}.

The right equivalence R is defined similarly. Note that the condition of
the right-hand-side is Σ0

1.
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Lemma 5.1. The following are equivalent over RCA0.

1. ACA0.

2. Let ϕ(x, y) ∈ Σ0
1 be an equivalence relation on a set A ⊂ N, i.e.,

• (∀a ∈ A)(ϕ(a, a)),

• (∀a, b ∈ A)(ϕ(a, b) → ϕ(b, a)),

• (∀a, b, c ∈ A)(ϕ(a, b) ∧ ϕ(b, c) → ϕ(a, c)).

Then there exists the set of all representatives A∗ ⊂ A, i.e.,

• (∀a ∈ A)(∃b ∈ A∗)(ϕ(a, b)),

• (∀a, b ∈ A∗)(ϕ(a, b) → a = b).
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Proposition 5.2. ACA0 proves Rees theorem for countable semigroups.

Proof.

• Take an element a ∈ S and let G ∼= {x ∈ S : xLa ∧ xRa}. This forms a
group by Green’s lemma (which is provable in RCA0).

• By the previous lemma, let Λ, I be the sets of all representatives of left
and right equivalence respectively.

• Take functions r : I → S such that (∀i ∈ I)(iRri ∧ riLa) and q : Λ → S
such that (∀λ ∈ Λ)(λLqλ ∧ qλRa). Let Pλi = qλri.

It follows that S ∼= M(G; I, Λ, P ).
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6 Exploration for reversal

Lemma 6.1 (Simpson, [7]). The following are equivalent over RCA0.

1. ACA0.

2. For any injection α : N → N, there exists the image of α

Imα = {j : (∃i)(α(i) = j)}.

Proposition 6.2. The following is provable in RCA0. Assume Rees
theorem for countable semigroups. Then for any simple and complete
semigroup S, the left equivalence of S exists.

Proof. (i, g, λ), (j, h, µ) ∈ M(G; I, Λ, P ) are left equivalent if and only if
λ = µ.

To show that Rees theorem implies ACA, it is enough to construct
simple and complete semigroup whose left equivalence encodes the image
of given injection α : N → N.
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Theorem 6.3. Let α : N → N be an injection. In RCA0 we can construct

1. a complete semigroup whose left equivalence encodes the image of α.

2. a simple semigroup whose left equivalence encodes the image of α.

3. a simple and complete magma M whose left equivalence encodes the
image of α.

Remark 6.4. A set with a binary operation is said to be a magma.
The binary operation need not to satisfy associativity. The notions of
simplicity, completeness, and left equivalence can be extended to magmas
naturally. Although the left equivalence of a magma need not to be
equivalent relation.
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Summary; partial results for reversal of Rees theorem

Finding a “semigroup” which encodes the image of given injection with...

simplicity completeness associativity
yes no yes X
no yes yes X
yes yes no X
yes yes yes WANTED
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