Reverse Mathematics, Artin-Wedderburn Theorem, and Rees Theorem

Takashi SATO Mathematical Institute of Tohoku University

 $\begin{array}{c} \text{CTFM 2015} \\ \text{September 11, 2015} \\ (16 \text{ slides}) \end{array}$

Contents

1	Reverse Mathematics	0-2
2	Artin-Wedderburn theorem for rings	0-4
3	$\mathbf{Artin-Wedderburn} \ \mathbf{theorem} \ \mathbf{and} \ WKL_0$	0-6
4	Rees theorem for semigroups	0-8
5	Formalizing the proof of Rees theorem in ACA_0	0-9
6	Exploration for reversal	0-12

1 Reverse Mathematics

Subsystems of second order arithmetic Z_2

system	characteristic axiom
RCA_0^*	recursive comprehension axiom and Σ_0^0 -induction
RCA_0	recursive comprehension axiom and Σ_1^0 -induction
WKL ₀	weak König's lemma
ACA_0	arithmetical comprehension axiom
ATR_0	arithmetical transfinite recursion
Π^1_1 -CA ₀	Π^1_1 -comprehension axiom

The main stream of Reverse Mathematics aims at

- formalizing mathematical theorems in the weak subsystem RCA_0 of second order arithmetic $\mathsf{Z}_2,$
- and classifying mathematical theorems into several subsystems of Z₂ in terms of set existence axioms exactly needed to prove them (cf. Simpson, [7]).

RM and structural theorems for groups

Theorem 1.1.

- 1. Over RCA_0^* , RCA_0 is equivalent to the fundamental theorem of finitely generated countable abelian groups (18c) (Hatzikiriakou (1989), [5]).
- 2. Over RCA_0 , ACA_0 is equivalent to the statement that every countable abelian group is the direct sum of a torsion group and a torsion-free group (Friedman, Simpson, and Smith (1983), [4]).
- 3. Over RCA_0 , ATR_0 is equivalent to the Ulm's theorem (1933) for countable abelian groups ().
- 4. Over RCA_0 , Π_1^1 - CA_0 is equivalent to the statement that every countable abelian group is the direct sum of a divisible group and a reduced group ().

2 Artin-Wedderburn theorem for rings

Definition 1. A ring R is said to be *simple* if

 $(\forall a \in R)(\forall b \in R \setminus \{0_R\})(\exists x, y \in R)(a = xby).$

If a ring R is simple then R does not have any non-trivial proper ideal.

Definition 2. A ring R is said to be *semisimple* if R is isomorphic to the finite product of simple rings.

Definition 3. A ring R is said to be *left Artinian* if there does not exists an infinite strictly descending chain of left ideals

 $I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots .^1$

Definition 4. The Jacobson radical Jac(R) of a ring R is defined as

$$\operatorname{Jac}(R) = \{ r \in R : (\forall a \in R) (\exists b \in R) [(1_R - ra)b = 1_R] \}.$$

¹It is interesting to consider the more strong chain condition that there does not exists an infinite sequence of elements $\langle a_i : i \in \mathbb{N} \rangle$ such that $(\forall i)(a_{i+1} \in (a_i) \land a_i \notin (a_{i+1}))$.

Theorem 2.1 (Wedderburn (1907)-Artin (1927)). Let R be a ring. The following are equivalent.

- 1. R is left Artinian and $Jac(R) = \{0_R\}.$
- 2. R is semisimple, i.e., there exists simple rings R_0, R_1, \ldots, R_n such that

$$R\cong R_0\oplus R_1\oplus\cdots\oplus R_n.$$

3. R is isomorphic to the finite product of matrix rings over division rings, i.e., there exists division rings D_0, D_1, \ldots, D_n and positive integers m_0, m_1, \ldots, m_n such that

$$R \cong M_{m_0}(D_0) \oplus M_{m_1}(D_1) \oplus \cdots \oplus M_{m_n}(D_n).$$

- Wedderburn's part is $2 \leftrightarrow 3$.
- Artin's part is $1 \leftrightarrow 2$.

3 Artin-Wedderburn theorem and WKL_0

 $\label{eq:proposition 3.1. Wedderburn's part of the theorem for countable rings is provable in RCA_0.$

Theorem 3.2 (Conidis (2012), [1,2]). Every Artinian commutative ring is isomorphic to a finite direct product of local Artinian commutative rings.

The result above is based on the result below.

Theorem 3.3 (Downey, Lemmp, and Mileti (2007), [3]). Over RCA_0 , WKL_0 is equivalent to the statement that every commutative ring which is not a field has a non-trivial proper ideal.

Corollary 3.4. Artin's part of the theorem for countable rings implies WKL_0 over RCA_0 .

It is likely that WKL_0 proves Artin's part.

Summary; RM for Artin-Wedderburn theorem and Rees theorem

theorem	date	classified into
Wedderburn's theorem	1907	RCA ₀
Artin's generalization	1927	$pprox WKL_0$
Rees theorem	1940	$pprox ACA_0$

- "The algebraists began to analyze Wedderburn's theorem and tried to find an even more abstract back ground." (Artin)
- "The Rees Theorem, strongly motivated by Wedderburn-Artin Theorem for rings..." (Howie, [6])

More abstract theories we explore, stronger axioms are needed to make statements nonvacuous.

4 Rees theorem for semigroups

For convenience, we assume that a semigroup does not contain the 0-element.

Definition 5. A semigroup S is said to be *simple* if $(\forall a, b \in S)(\exists x, y \in S)(a = xby)$. If a semigroup S is simple then S does not have any non-trivial proper ideal.

Definition 6. We define an order on the set of idempotents of a semigroup as $f \leq e \Leftrightarrow ef = fe = f$. A semigroup is said to be *complete* if there exists a minimal idempotent with respect to the order.²

Definition 7. Let I, Λ be non-empty sets, G be a group, and $P : \Lambda \times I \to G$. The *Rees matrix semigroup* $M(G; I, \Lambda, P)$ is the set $I \times G \times \Lambda$ together with the multiplication $(i, g, \lambda) \cdot (j, h, \mu) = (i, gP_{\lambda j}h, \mu)$.

Theorem 4.1 (Rees (1940)). If a semigroup S is simple and complete then there exist non-empty sets I, Λ , a group G, and $P : \Lambda \times I \to G$ such that $S \cong M(G; I, \Lambda, P)$, and vice varsa.

²This can be seen as a kind of chain condition.

5 Formalizing the proof of Rees theorem in ACA_0

Definition 8. The following is defined in RCA_0 . Let S be a countable semigroup. A binary relation \mathcal{L} on S is said to be the *left equivalence* if

$$\mathcal{L} = \{ (a,b) \in S \times S : (\exists x, y \in S) (a = xb \land b = ya) \}.$$

The right equivalence \mathcal{R} is defined similarly. Note that the condition of the right-hand-side is Σ_1^0 .

Lemma 5.1. The following are equivalent over RCA_0 .

1. ACA_0 .

- 2. Let $\varphi(x,y) \in \Sigma_1^0$ be an equivalence relation on a set $A \subset \mathbb{N}$, i.e.,
 - $(\forall a \in A)(\varphi(a, a)),$
 - $(\forall a, b \in A)(\varphi(a, b) \rightarrow \varphi(b, a)),$
 - $(\forall a, b, c \in A)(\varphi(a, b) \land \varphi(b, c) \rightarrow \varphi(a, c)).$

Then there exists the set of all representatives $A^* \subset A$, i.e.,

• $(\forall a \in A)(\exists b \in A^*)(\varphi(a, b)),$

$$\bullet \ (\forall a,b\in A^*)(\varphi(a,b)\rightarrow a=b).$$

Proposition 5.2. ACA_0 proves Rees theorem for countable semigroups.

Proof.

- Take an element $a \in S$ and let $G \cong \{x \in S : x\mathcal{L}a \land x\mathcal{R}a\}$. This forms a group by Green's lemma (which is provable in RCA_0).
- By the previous lemma, let Λ, I be the sets of all representatives of left and right equivalence respectively.
- Take functions $r: I \to S$ such that $(\forall i \in I)(i\mathcal{R}r_i \wedge r_i\mathcal{L}a)$ and $q: \Lambda \to S$ such that $(\forall \lambda \in \Lambda)(\lambda \mathcal{L}q_\lambda \wedge q_\lambda \mathcal{R}a)$. Let $P_{\lambda i} = q_\lambda r_i$.

It follows that $S \cong M(G; I, \Lambda, P)$.

6 Exploration for reversal

Lemma 6.1 (Simpson, [7]). The following are equivalent over RCA_0 .

1. ACA_0 .

2. For any injection $\alpha : \mathbb{N} \to \mathbb{N}$, there exists the image of α

$$\operatorname{Im} \alpha = \{j : (\exists i)(\alpha(i) = j)\}.$$

Proposition 6.2. The following is provable in RCA_0 . Assume Rees theorem for countable semigroups. Then for any simple and complete semigroup S, the left equivalence of S exists.

Proof. $(i, g, \lambda), (j, h, \mu) \in M(G; I, \Lambda, P)$ are left equivalent if and only if $\lambda = \mu$.

To show that Rees theorem implies ACA, it is enough to construct simple and complete semigroup whose left equivalence encodes the image of given injection $\alpha : \mathbb{N} \to \mathbb{N}$. **Theorem 6.3.** Let $\alpha : \mathbb{N} \to \mathbb{N}$ be an injection. In RCA_0 we can construct

- 1. a complete semigroup whose left equivalence encodes the image of α .
- 2. a simple semigroup whose left equivalence encodes the image of α .
- 3. a simple and complete magma M whose left equivalence encodes the image of α .

Remark 6.4. A set with a binary operation is said to be a *magma*. The binary operation need not to satisfy associativity. The notions of simplicity, completeness, and left equivalence can be extended to magmas naturally. Although the left equivalence of a magma need not to be equivalent relation.

Summary; partial results for reversal of Rees theorem

Finding a "semigroup" which encodes the image of given injection with...

simplicity	completeness	associativity	
yes	no	yes	\checkmark
no	yes	yes	\checkmark
yes	yes	no	\checkmark
yes	yes	yes	WANTED

References

- Conidis, C. J. Chain Conditions in Computable Rings. <u>Transactions of the American Mathematical Society, vol. 362(12) 6523-6550</u>, 2010.
- [2] Conidis, C. J. A New Proof That Artinian Implies Noetherian via Weak König's Lemma. Submitted, 2012.
- [3] Downey, R., Lempp, S., and Mileti, J. R. Ideals In Computable Rings. Journal of Algebra 314 (2007) 872-887, 2007.
- [4] Friedman, H., Simpson, S. G., and Smith, R. Countable Algebra and Set Existence Axioms. Annals of Pure and Applied Logic 25, 141-181, 1983.
- [5] Hatzikiriakou, K. Algebraic disguises of Σ_1^0 induction. Archives of Mathematical Logic 29, 47-51, 1989.
- [6] Howie, J. M. <u>Fundamentals of Semigroup Theory</u>. Oxford University Press, 1996.
- [7] Simpson, S. G. <u>Subsystems of Second Order Arithmetic (2nd edition)</u>. Cambridge University Press, 2009.