
Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Kazuyuki Tanaka’s work on AND-OR trees and
subsequent development

Toshio Suzuki

Department of Math. and Information Sciences, Tokyo Metropolitan University,

CTFM 2015, Tokyo Institute of Technology

September 7–11, 2015

1 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Abstract

Searching a game tree is an important subject of artificial
intelligence. In the case where the evaluation function is bi-valued,
the subject is interesting for logicians, because a game tree in this
case is a Boolean function.

Kazuyuki Tanaka has a wide range of research interests which
include complexity issues on AND-OR trees. In the joint paper with
C.-G. Liu (2007) he studies distributional complexity of AND-OR
trees. We overview this work and subsequent development.
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Min-max search on a game tree

MAX

MIN

MAX

VALUES of the EVALUATION FUNCTION

Time of computing ' # of times of calling the evaluation function
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Our setting

A uniform binary AND-OR tree T k2

T 1
2

x00 x01 x10 x11

∧ = AND = Min.

∨ = OR = Max.

T k+1
2 is defined by replacing each leaf

of T k2 with T 1
2 .

Find: root = 1 (TRUE) or 0 (FALSE)?

Each leaf is hidden.

Cost := # of leaves probed

Allowed to skip a leaf (α-β pruning).
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Alpha-beta pruning algorithm

Definition.

Depth-first.

A child of an AND-gate has the value 0

⇓
Recognize that the AND-gate has the value 0
without probing the other child (an alpha-cut).

Similar rule applies to an OR-gate (a beta-cut).

Knuth, D.E. and Moore, R.W.: An analysis of alpha-beta pruning.
Artif. Intell., 6 pp. 293–326 (1975).
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The optimality of alpha-beta pruning algo. for IID

ID = independent distribution

IID = independent and identical distribution

CD = correlated distribution

In the case of IID:

The optimality of alpha-beta pruning algorithms is studied by
Baudet (1978) and Pearl (1980), and the optimality is shown by
Pearl (1982) and Tarsi (1983).

Baudet, G.M.: Artif. Intell., 10 (1978) 173–199.
Pearl, J.: Artif. Intell., 14 pp.113–138 (1980).
Pearl, J.: Communications of the ACM, 25 (1982) 559–564.
Tarsi, M.: J. ACM, 30 pp. 389–396 (1983).
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A variant of von Neumann’s min-max theorem

Yao’s Principle (1977)

Randomized complexity Distributional complexity

min
AR

max
ω

cost(AR, ω) = max
d

min
AD

cost(AD, d),

ω : truth assignment AD : deterministic algorithm

AR : randomized algo. d : prob. distribution

on the truth assignments

Yao, A.C.-C.: Probabilistic computations: towards a unified
measure of complexity.
In: Proc. 18th IEEE FOCS, pp.222–227 (1977).
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Estimation of the equilibrium value

Saks and Wigderson (1986)

For a perfect binary AND-OR tree,

(Randomized Complexity) ≈ (Constant)×
(1 +

√
33

4

)h
,

where h is the height of the tree.

Saks, M. and Wigderson, A.:
Probabilistic Boolean decision threes and the complexity of
evaluating game trees.
In: Proc. 27th IEEE FOCS, pp.29–38 (1986).
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Kazuyuki Tanaka’s work with C.-G. Liu (1)

Liu, C.-G. and Tanaka, K.:
Eigen-distribution on random assignments for game trees.
Inform. Process. Lett., 104 pp.73–77 (2007).

Preliminary versions:

In: SAC ’07 pp.78–79 (2007).

In: AAIM 2007, LNCS 4508 pp.241–250 (2007).
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The eigen-distribution

Def.

“d is the eigen-distribution (for NNN)”
⇔ d has the property NNN and

minAD cost(AD, d) = maxδminAD cost(AD, δ)

Here,
AD runs over all deterministic alpha-beta pruning algorithms.
δ runs over all prob. distributions s.t. NNN.

NNN is e.g., ID.

They study the eigen-distributions in the two cases:
the ID-case and the CD-case.
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The ID case

Theorem 4 (Liu and Tanaka, IPL (2007))

If d is the eigen-distribution for IDs then d is an IID.

Given k (i.e., height of T k2 = 2k), define % as follows.
The IID in which prob[the value is 0] = % at every leaf is the
eigen-distribution among IID.

Theorem 5 (Liu and Tanaka, IPL (2007)) For T k2 and IID:

√
7− 1

3
≤ % ≤

√
5− 1

2
% is strictly increasing function of k.

12 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

The CD case

Def. (Saks-Wigderson) The reluctant inputs

When assigning 0 to an ∧, assign 0 to exactly one child.

When assigning 1 to an ∨, assign 1 to exactly one child.

Liu and Tanaka extend the above concept.

RAT (the reverse assignment technique), i = 0, 1

i-set is the set of all reluctant inputs s.t. the root has value i.

Ei-distribution is the dist. on i-set s.t.
all the deterministic algorithm have the same complexity.
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The CD case (continued)

Theorem 8 (Liu and Tanaka, IPL (2007)) For T k2 :

Ei-distribution is the uniform distribution on i-set.

Theorem 9 (Liu and Tanaka, IPL (2007)) For T k2 and CD:

E1-distribution is the unique eigen-distribution.
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Kazuyuki Tanaka’s work with C.-G. Liu (2)

Given a Boolean function f ,
β(f) denotes the distributional complexity (i.e. the
max-min-cost achieved by the eigen-distribution) w.r.t. 1-set.

α(f) denotes that w.r.t. 0-set.

Trees are not supposed to be binary in this paper.

Given a tree T , they study recurrences on β(fT ) and α(fT ).

Liu, C.-G. and Tanaka, K.:
The computational complexity of game trees by eigen-distribution.
COCOA 2007, LNCS 4616 pp.323–334 (2007).
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Extension (1): CD-case of T k2 [1/5]

We consider classes of truth assignments (and, algorithms)
closed under transpositions.
The concept of “a distribution achieving the equilibriumthe w.r.t.
the given classes” is naturally defined.

S. and Nakamura, R.:
The eigen distribution of an AND-OR tree under directional
algorithms.
IAENG Internat. J. of Applied Math., 42, pp.122-128 (2012).
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Extension (1): CD-case of T k2 [2/5]

of a node / a truth assignment / an algorithm

17 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs
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Extension (1): CD-case of T k2 [3/5]

Definition. Directional Algorithms

An alpha-beta pruning algorithm is said to be directional if for
some linear ordering of the leaves it never selects for examination a
leaf situated to the left of a previously examined leaf.

Suppose x, y and z are leaves.

Allowed: To skip x.

Not allowed:
If ( x is skipped ) { scan y before z } else { scan z before y
}

Pearl, J.: Asymptotic properties of minimax trees and
game-searching procedures. Artif. Intell., 14 pp.113–138 (1980).
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Extension (1): CD-case of T k2 [4/5]

S. and Nakamura (2012)

(a) The Failure of the Uniqueness

In the situation where only directional algorithms are considered,
the uniqueness of d achieving the equilibrium fails.

(b) A Counterpart of the Liu-Tanaka Theorem

In the situation where only directional algorithms are considered, A
weak version of the Liu-Tanaka theorem holds. (1) is equivalent to
(2).

(1) d achieves the equilibrium.

(2) d is on the 1-set and the cost does not depend on an
algorithm.
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Extension (1): CD-case of T k2 [5/5]

A key to the result (b) is the following.

No-Free-Lunch Theorem (Wolpert and Macready, 1995)

(Under certain assumptions)
Averaged over all cost functions,
all search algorithms give the same performance.

Wolpert, D.H. and MacReady, W.G.:
No-free-lunch theorems for search,
Technical report SFI-TR-95-02-010, Santa Fe Institute, Santa Fe,
New Mexico (1995).
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Extension (2): ID-case of T k2 [1/4]

Theorem 4 (Liu and Tanaka, 2007)

If d achieves the equilibrium among IDs then d is an IID.

Their proof: “It is not hard.”

Is it ( Ô) really easy to prove? No. A brutal induction does not
work. We show a stronger form of Theorem 4 with clever tricks of
induction.

S. and Niida, Y.:
Equilibrium points of an AND-OR tree: Under constraints on
probability,
Ann. Pure Appl. Logic , 166, pp. 1150–1164 (2015).
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Extension (2): ID-case of T k2 [2/4]

Keys to the solution

Lemma 1 (S. and Niida, 2015)

Consider an IID on an OR-AND tree.
x := prob. of a leaf (having the value 0).
p(x) := prob. of the root (having the value 0).
c(x) := expected cost of the root.

Then, both of the followings are decreasing functions of x
(0 < x < 1).

c(x)

p(x)
,

c′(x)

p′(x)
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Extension (2): ID-case of T k2 [3/4]

Lemma 2 (S. and Niida, 2015)

A certain constraint extremum problem has a unique solution.

The proof highlight: By means of Lemma 1, the objective function
is decreasing in a certain open interval.

Remark:
At the maximizer, the objective function is NOT differentiable.
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Extension (2): ID-case of T k2 [4/4]

Theorem (S. and Niida, 2015)

Fix an r (0 < r < 1). Let rID denote an ID s.t. prob. of the
root (having the value 0) is r.

If d achieves the equilibrium among rIDs then d is an IID.

N
As a corollary

Theorem 4 (Liu and Tanaka, 2007)

If d achieves the equilibrium among IDs then d is an IID.
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Extension (3): ID-case for more general trees

Recently, NingNing Peng, Yue Yang , Keng Meng Ng and
Kazuyuki Tanaka extend the results of S. and Niida (2015) to trees
not necessarily binary.
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Thank you for your attention.

Happy 60th birthday.

26 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Baudet, G.M.: On the branching factor of the alpha-beta
pruning algorithm, Artif. Intell., 10 (1978) 173–199.

Knuth, D.E. and Moore, R.W.: An analysis of alpha-beta
pruning. Artif. Intell., 6 pp. 293–326 (1975).

Liu, C.-G. and Tanaka, K.: Eigen-distribution on random
assignments for game trees.
Inform. Process. Lett., 104 pp.73–77 (2007).

Pearl, J.: Asymptotic properties of minimax trees and
game-searching procedures. Artif. Intell., 14 pp.113–138
(1980).

Pearl, J.: The solution for the branching factor of the
alpha-beta pruning algorithm and its optimality,
Communications of the ACM, 25 (1982) 559–564.

27 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Saks, M. and Wigderson, A.: Probabilistic Boolean decision
threes and the complexity of evaluating game trees.
In: Proc. 27th IEEE FOCS, pp.29–38 (1986).

Suzuki, T. and Nakamura, R.: The eigen distribution of an
AND-OR tree under directional algorithms.
IAENG Internat. J. of Applied Math., 42, pp.122-128 (2012).
www.iaeng.org/IJAM/issues_v42/issue_2/index.html

Suzuki, T. and Niida, Y.: Equilibrium points of an AND-OR
tree: Under constraints on probability, Ann. Pure Appl. Logic ,
166, pp. 1150–1164 (2015).

Tarsi, M.: Optimal search on some game trees. J. ACM, 30
pp. 389–396 (1983).

Wolpert, D.H. and MacReady, W.G.: No-free-lunch theorems
for search, Technical report SFI-TR-95-02-010, Santa Fe
Institute, Santa Fe, New Mexico (1995).

28 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Figure 0: c∨,1(x)/p∨,1(x) (0.1 < x < 0.9)
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Figure 1: c∨,2(x)/p∨,2(x) (0 < x < 1)
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Figure 2: c∨,3(x)/p∨,3(x) (0.1 < x < 0.9)

31 / 36



Abstract Outline Background Tanaka’s work (1) (2) Extension (1) (2) (3) References Appendix: Graphs

Figure 3: c∨,4(x)/p∨,4(x) (0.1 < x < 0.9)
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Figure 4: c′∨,1(x)/p
′
∨,1(x) (0.1 < x < 0.9)
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Figure 5: c′∨,2(x)/p
′
∨,2(x) (0 < x < 1)
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Figure 6: c′∨,3(x)/p
′
∨,3(x) (0.1 < x < 0.9)
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Figure 7: c′∨,4(x)/p
′
∨,4(x) (0.1 < x < 0.9)
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