Effective Reducibility for Smooth and Analytic Equivalence Relations on a Cone

Takayuki Kihara

University of California, Berkeley, USA

Joint Work with Antonio Montalbán (UC Berkeley)

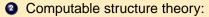
Computability Theory and Foundation of Mathematics 2015, Sep 2015

Invariant descriptive set theory:

Ocmputable structure theory:

- Invariant descriptive set theory: classification of classification problems of mathematical structures such as:
 - Isomorphism relation on countable Boolean algebras.
 - Isomorphism relation on countable *p*-groups.
 - Isometry relation on Polish metric spaces.
 - Linear isometry relation on separable Banach spaces.
 - Isomorphism relation on separable **C***-algebras.

Key notion: Borel reducibility among equivalence relations on Borel spaces.



Invariant descriptive set theory: classification of classification problems of mathematical structures such as:

- Isomorphism relation on countable Boolean algebras.
- Isomorphism relation on countable *p*-groups.
- Isometry relation on Polish metric spaces.
- Linear isometry relation on separable Banach spaces.
- Isomorphism relation on separable C*-algebras.

Key notion: Borel reducibility among equivalence relations on Borel spaces.

- Computable structure theory: classification of classification problems of computable structures such as:
 - Isomorphism relation of computable trees.
 - Isomorphism relation of computable torsion-free abelian grps
 - Bi-embeddability relation of computable linear orders.

Key notion: computable reducibility among equivalence relations on *represented spaces*.

- (X, δ) is a *represented space* if $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection.
- A point *x* ∈ *X* is *computable* if it has a computable name, that is, there is a computable *p* ∈ δ⁻¹{*x*}.

- (X, δ) is a *represented space* if $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection.
- A point *x* ∈ *X* is *computable* if it has a computable name, that is, there is a computable *p* ∈ δ⁻¹{*x*}.

Example

- The space of countable *L*-structures is represented: For a countable relational language *L* = (*R_i*)_{*i*∈ℕ}, each countable *L*-structure *K* with domain ⊆ ω is identified with its atomic diagram *D*(*K*) = ⊕_{*i*∈ℕ}*R^K_i* ∈ 2^ω. For a class K of countable *L*-structures with δ : *D*(*K*) → *K*, (K, δ) forms a represented space.
- 2 Polish spaces, second-countable T_0 space are represented.
- Much more generally, every *T*₀ space with a countable cs-network has a "universal" representation *δ*, i.e., for any representation *δ'*, there is a continuous map *g* such that *δ'* = *δ* ∘ *g*.

- (X, δ) is a *represented space* if $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ is a partial surjection.
- A point *x* ∈ *X* is *computable* if it has a computable name, that is, there is a computable *p* ∈ δ⁻¹{*x*}.
- The e-th computable point of $X = (X, \delta)$ is denoted by Φ_e^X .

Let **E** and **F** be equivalence relations on represented spaces X and **Y**, respectively. We say that $E \leq_{\text{eff}} F$ if there is a partial computable function $f :\subseteq \mathbb{N} \to \mathbb{N}$ such that for all $i, j \in \mathbb{N}$ with $\Phi_i^X, \Phi_j^X \in \text{dom}(\delta_X)$, $\Phi_i^X E \Phi_j^X \iff \Phi_{f(i)}^Y F \Phi_{f(i)}^Y$.

Let *E* and *F* be equivalence relations on Borel spaces X and \mathcal{Y} , respectively. We say that $E \leq_{B} F$ if there is a Borel function $f : X \to \mathcal{Y}$ such that for all $x, y \in X$,

$$xEy \iff f(x)Ff(y).$$

"Effective reducibility on a cone"

"Effective reducibility on a cone"

i.e., the oracle-relativized version of effective reducibility.

 The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does NOT involve any notion concerning computability:

"Effective reducibility on a cone"

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does *NOT* involve any notion concerning computability:

"Effective reducibility on a cone"

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does *NOT* involve any notion concerning computability:
 - (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The Louveau separation theorem ->>> a decomposition theorem for Borel measurable functions in descriptive set theory.
 - (K.-Pauly) Turing degree spectrum / Scott ideals (ω-models of WKL) → a refinement of R. Pol's solution to Alexandrov's problem in infinite dimensional topology.

"Effective reducibility on a cone"

- The oracle relativization of a computability-theoretic concept sometimes has applications in other areas of mathematics which does *NOT* involve any notion concerning computability:
 - (Gregoriades-K., K.-Ng) the Shore-Slaman join theorem / The Louveau separation theorem ->>> a decomposition theorem for Borel measurable functions in descriptive set theory.
 - (K.-Pauly) Turing degree spectrum / Scott ideals (ω-models of WKL) → a refinement of R. Pol's solution to Alexandrov's problem in infinite dimensional topology.
 - (K.-Pauly) Turing degree spectrum / Scott ideals ~> a construction of linearly non-isometric (ring non-isomorphic, etc.) examples of Banach algebras of real-valued Baire *n* functions on Polish spaces.

Let **E** and **F** be equivalence relations on represented spaces X and \mathcal{Y} , respectively. We say that $E \leq_{\text{eff}}^{\text{cone}} F$ if there is a partial computable function $f :\subseteq \mathbb{N} \to \mathbb{N}$ such that $(\exists r \in 2^{\omega})(\forall z \geq_T r)$ for all $i, j \in \mathbb{N}$ with $\Phi_i^{z,\chi}, \Phi_i^{z,\chi} \in \text{dom}(\delta_X)$,

$$\Phi_{i}^{z,\chi} E \Phi_{j}^{z,\chi} \iff \Phi_{f(i)}^{z,\mathcal{Y}} F \Phi_{f(i)}^{z,\mathcal{Y}}.$$

- **E** is said to be *analytic* $\leq_{\text{eff}}^{\text{cone}}$ -complete if $F \leq_{\text{eff}}^{\text{cone}} E$ for any analytic equivalence relation **F**.
- **E** is said to be $\leq_{\text{off}}^{\text{cone}}$ -intermediate if
 - **E** is not analytic $\leq_{\text{off}}^{\text{cone}}$ -complete,
 - and there is no Borel eq. relation **F** such that $E \leq_{\text{aff}}^{\text{cone}} F$.

The Vaught Conjecture (1961)

The number of countable models of a first-order theory is at most countable or 2^{\aleph_0} .

- (The *L*_{ω1ω}-Vaught conjecture) The number of countable models of an *L*_{ω1ω}-theory is at most countable or 2^{ℵ0}.
- (Topological Vaught conjecture) The number of orbits of a continuous action of a Polish group on a standard Borel space is at most countable or 2^{No}.

The Vaught Conjecture (1961)

The number of countable models of a first-order theory is at most countable or 2^{\aleph_0} .

- (The *L*_{ω1ω}-Vaught conjecture) The number of countable models of an *L*_{ω1ω}-theory is at most countable or 2^{ℵ0}.
- (Topological Vaught conjecture) The number of orbits of a continuous action of a Polish group on a standard Borel space is at most countable or 2[№].

Fact (Becker 2013; Knight and Montalbán)

Suppose that there is no $\mathcal{L}_{\omega_1\omega}$ -axiomatizable class of countable structures whose isomorphism relation is $\leq_{\text{eff}}^{\text{cone}}$ -intermediate then, the $\mathcal{L}_{\omega_1\omega}$ -Vaught conjecture is true.

Indeed, if there is no $\leq_{\text{eff}}^{\text{cone}}$ -intermediate orbit equivalence relation then, the topological Vaught conjecture is true.

The differences of \leq_{B} and \leq_{eff}^{cone} among non-Borel orbit eq. relations: For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an *L*_{ω₁ω}-axiomatizable class of countable structure *CANNOT* be analytic ≤_B-complete.
- Moreover, the isomorphism relation on countable torsion abelian groups is NOT ≤_B-complete even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on computable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are <<u>eff</u>-complete analytic equivalence relations.
- The isomorphism relation on computable torsion abelian groups is also a ≤_{eff}-complete analytic equivalence relation.

The differences of \leq_{B} and \leq_{eff}^{cone} among non-Borel orbit eq. relations: For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an *L*_{ω1ω}-axiomatizable class of countable structure *CANNOT* be analytic ≤_B-complete.
- Moreover, the isomorphism relation on countable torsion abelian groups is NOT ≤_B-complete even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on countable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are ≤^{cone}-complete analytic equivalence relations.
- The isomorphism relation on countable torsion abelian groups is also a ≤^{cone}-complete analytic equivalence relation.

The differences of \leq_{B} and \leq_{eff}^{cone} among non-Borel orbit eq. relations: For Borel reducibility (H. Friedman and Stenley 1989):

- The isomorphism relation on an *L*_{ω₁ω}-axiomatizable class of countable structure *CANNOT* be analytic ≤_B-complete.
- Moreover, the isomorphism relation on countable torsion abelian groups is NOT ≤_B-complete even among isomorphism relations on classes of countable structures.

For computable reducibility (Fokina, S. Friedman, et al. 2012):

- The isomorphism relations on countable graphs, torsion-free abelian groups, fields (of a fixed characteristic), etc. are ≤^{cone}-complete analytic equivalence relations.
- The isomorphism relation on countable torsion abelian groups is also a ≤^{cone}-complete analytic equivalence relation.

In this talk, we focus on the differences of \leq_B and $\leq_{\text{off}}^{\text{cone}}$ among

- non-Borel non-orbit analytic equivalence relations,
- and smooth equivalence relations.

Non-orbit analytic equivalence relations:

 $xE_{wo}y : \iff$ either $x, y \notin WO$ or x and y are isomorphic as w.o. $xE_{ck}y : \iff \omega_1^x = \omega_1^y$ holds.

Fact

- (Gao) E_{wo} and E_{ck} are \leq_B -incomparable.
- (Coskey-Hamkins 2011) E_{wo} and E_{ck} are \leq_{ITTM} -bireducible.

Non-orbit analytic equivalence relations:

 $x E_{wo} y : \iff$ either $x, y \notin WO$ or x and y are isomorphic as w.o. $x E_{ck} y : \iff \omega_1^x = \omega_1^y$ holds.

Fact

- (Gao) E_{wo} and E_{ck} are \leq_B -incomparable.
- (Coskey-Hamkins 2011) E_{wo} and E_{ck} are \leq_{ITTM} -bireducible.

Theorem

•
$$E_{ck} \leq_{eff}^{cone} E_{wo}$$
.
• If $V = L$, then $E_{ck} <_{eff}^{cone} E_{wo}$.

Non-orbit analytic equivalence relations:

 $xE_{wo}y : \iff$ either $x, y \notin WO$ or x and y are isomorphic as w.o. $xE_{ck}y : \iff \omega_1^x = \omega_1^y$ holds.

Fact

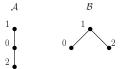
- (Gao) E_{wo} and E_{ck} are \leq_B -incomparable.
- (Coskey-Hamkins 2011) E_{wo} and E_{ck} are \leq_{ITTM} -bireducible.

Theorem

•
$$E_{ck} \leq_{eff}^{cone} E_{wo}$$
.
• If $V = L$, then $E_{ck} <_{eff}^{cone} E_{wo}$.

Conjecture

If \mathbf{x}^{\sharp} exists for any real \mathbf{x} , then $\mathbf{E}_{ck} \equiv_{eff}^{cone} \mathbf{E}_{wo}$.

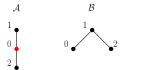


 $T(\mathcal{A}, \mathcal{B})$

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$ $\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

 $(i, j \in A, i, j < |\sigma|) \ i \leq_A j \ \text{iff} \ \sigma(i) \leq_B \sigma(j),$

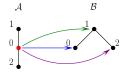
- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



 $T(\mathcal{A}, \mathcal{B})$

$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$

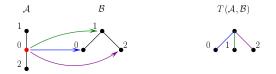


 $T(\mathcal{A}, \mathcal{B})$

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$ $\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

 $(i, j \in \mathbf{A}, i, j < |\sigma|) \ i \leq_{\mathbf{A}} j \text{ iff } \sigma(i) \leq_{\mathbf{B}} \sigma(j),$

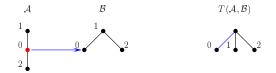
- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in \mathbf{A}, i < |\sigma|, j \in \mathbf{B}, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$ $\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

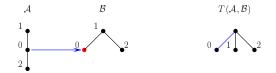
 $(i, j \in A, i, j < |\sigma|) \ i \leq_A j \ \text{iff} \ \sigma(i) \leq_B \sigma(j),$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in \mathbf{A}, i < |\sigma|, j \in \mathbf{B}, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



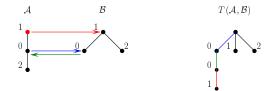
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$

For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$ $\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

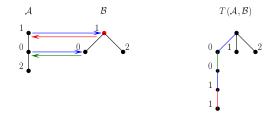
 $(i, j \in A, i, j < |\sigma|) \ i \leq_A j \ \text{iff} \ \sigma(i) \leq_B \sigma(j),$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in \mathbf{A}, i < |\sigma|, j \in \mathbf{B}, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



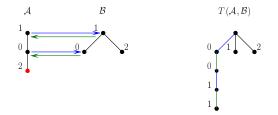
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



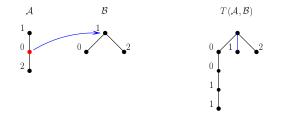
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



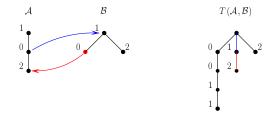
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



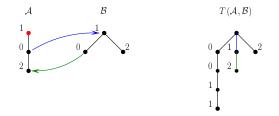
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



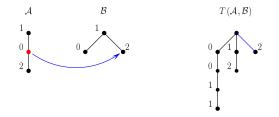
$$(i, j \in A, i, j < |\sigma|) \ i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



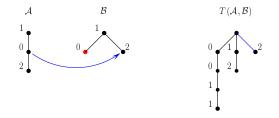
$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

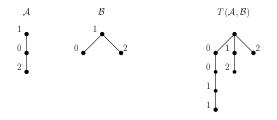
- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$



$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$

 $T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B} .



For partial orders $\mathcal{A} = (A, \leq_A)$ and $\mathcal{B} = (B, \leq_B)$ with $A, B \subseteq \omega$ $\sigma \oplus \tau \in T(\mathcal{A}, \mathcal{B})$ iff

$$(i, j \in A, i, j < |\sigma|) i \leq_A j \text{ iff } \sigma(i) \leq_B \sigma(j),$$

- $(i, j \in B, i, j < |\tau|) \ i \leq_B j \text{ iff } \tau(i) \leq_A \tau(j),$
- $(i \in A, i < |\sigma|, j \in B, j < |\tau|) \sigma(i) = j \text{ iff } \tau(j) = i.$

 $T(\mathcal{A}, \mathcal{B})$: the tree of partial isomorphisms between \mathcal{A} and \mathcal{B} .

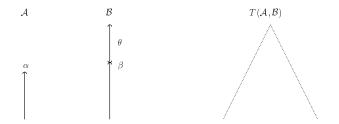
Lemma (Upper Bound)

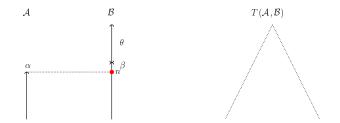
 $\alpha < \beta < \omega_1$: ordinals. $\mathcal{R} \in LO$ s.t. $otype(\mathcal{R}) = \alpha + \lambda$, where λ has no least element. $\mathcal{B} \in LO$ s.t. $otype(\mathcal{B}) = \beta + \theta$ for a linear order θ . Then, $rank(\mathcal{T}(\mathcal{R}, \mathcal{B})) \le \omega^{\alpha+2}$.

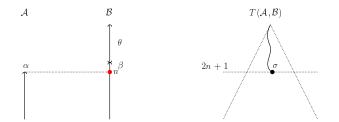
 β is α -closed if $(\forall \gamma < \alpha)(\forall \delta < \beta) \delta + \gamma < \beta$.

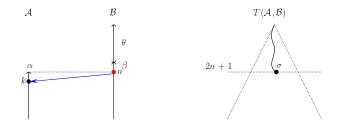
Lemma (Lower Bound)

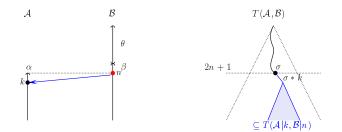
 $\alpha, \beta < \omega_1$: ordinals, β is ω^{α} -closed, $c \in \omega$ $\mathcal{A} \in WO$ s.t. otype(\mathcal{A}) = $\omega^{\alpha} \cdot c$. $\mathcal{B} \in WO$ s.t. otype(\mathcal{B}) = β . Then, rank($T(\mathcal{A}, \mathcal{B})$) $\geq \omega \cdot \alpha$.



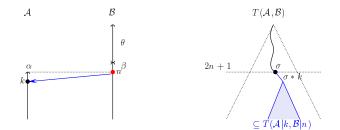




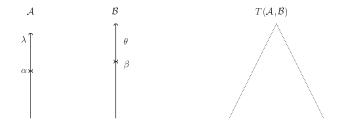


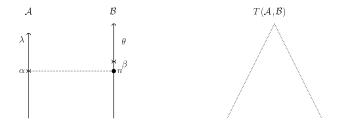


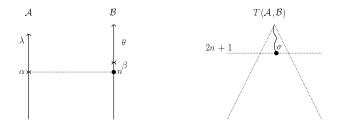
 $\begin{array}{l} \mathcal{A}: \text{ a well order s.t. otype}(\mathcal{A}) = \alpha. \\ \mathcal{B}: \text{ a linear order s.t. otype}(\mathcal{B}) = \beta + \theta \text{ for } \beta > \alpha \text{ and linear } \theta. \\ \text{Then, } \mathbf{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \leq \omega^{\alpha+1}. \end{array}$

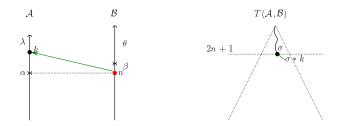


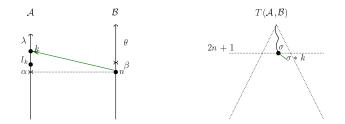
 $\operatorname{rank}(T(\mathcal{A},\mathcal{B})) \leq \sup_k \operatorname{rank} T(\mathcal{A} \upharpoonright k, \mathcal{B} \upharpoonright n) + 2n + 1.$

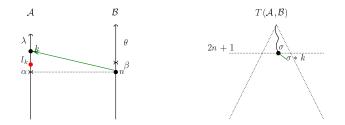


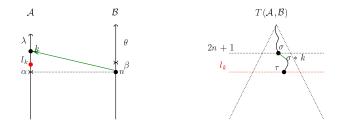


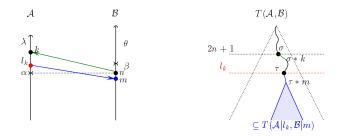


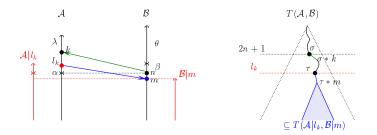




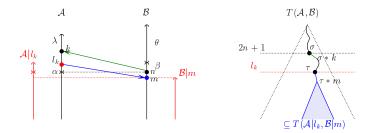






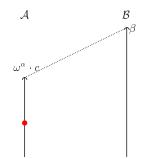


 $\mathcal{A} \in \text{LO s.t. otype}(\mathcal{A}) = \alpha + \lambda$, where λ has no least element. $\mathcal{B} \in \text{LO s.t. otype}(\mathcal{B}) = \beta + \theta$ for $\beta > \alpha$ and linear θ . Then, $\text{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \le \omega^{\alpha+2}$.

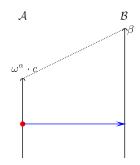


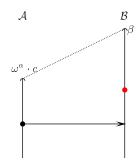
• rank $(T(\mathcal{A}, \mathcal{B})) \leq \sup_k (\sup_m \operatorname{rank} T(\mathcal{A} \upharpoonright I_k, \mathcal{B} \upharpoonright m)_{+I_k})_{+2n+1}$. • rank $(\mathcal{A} \upharpoonright I_k, \mathcal{B} \upharpoonright m) \leq \omega^{\alpha_m+1}$, where $\alpha_m := \operatorname{otype}(\mathcal{B} \upharpoonright m) < \alpha$.

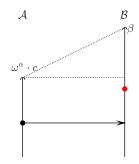
$\begin{aligned} \mathcal{A} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{A}) &= \omega^{\alpha}. \\ \mathcal{B} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{B}) &= \beta \ \mathrm{s.t.} \ (\forall \gamma < \omega^{\alpha}) (\forall \delta < \beta) \ \delta + \gamma < \beta. \\ \mathrm{Then,} \ \mathrm{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \end{aligned}$

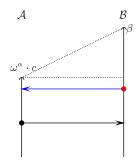


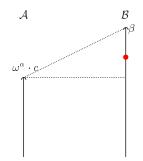
$\begin{aligned} \mathcal{A} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{A}) &= \omega^{\alpha}. \\ \mathcal{B} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{B}) &= \beta \ \mathrm{s.t.} \ (\forall \gamma < \omega^{\alpha}) (\forall \delta < \beta) \ \delta + \gamma < \beta. \\ \mathrm{Then,} \ \mathrm{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \end{aligned}$

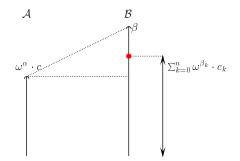


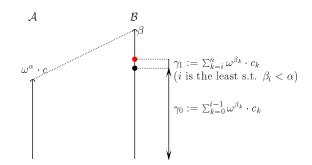


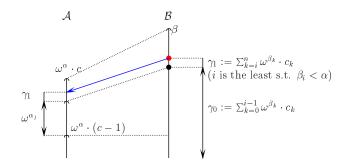




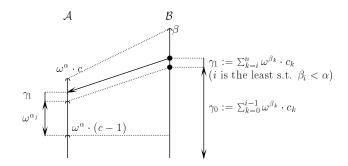






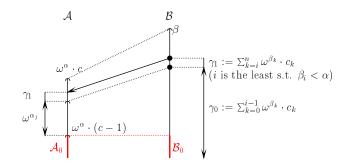


• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.



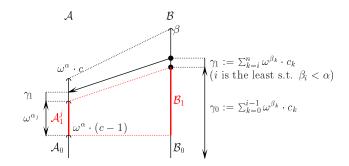
• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.

 $\begin{aligned} \mathcal{A} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{A}) &= \omega^{\alpha}. \\ \mathcal{B} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{B}) &= \beta \ \mathrm{s.t.} \ (\forall \gamma < \omega^{\alpha}) (\forall \delta < \beta) \ \delta + \gamma < \beta. \\ \mathrm{Then,} \ \mathrm{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \end{aligned}$

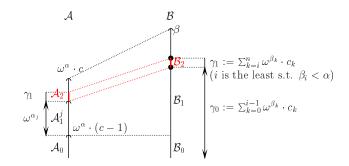


• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.

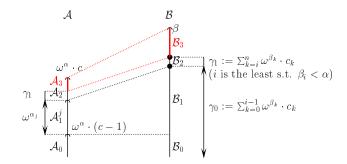
 $\begin{aligned} \mathcal{A} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{A}) &= \omega^{\alpha}. \\ \mathcal{B} \in \mathrm{WO} \ \mathrm{s.t.} \ \mathrm{otype}(\mathcal{B}) &= \beta \ \mathrm{s.t.} \ (\forall \gamma < \omega^{\alpha}) (\forall \delta < \beta) \ \delta + \gamma < \beta. \\ \mathrm{Then,} \ \mathrm{rank}(\mathcal{T}(\mathcal{A}, \mathcal{B})) \geq \omega \cdot \alpha. \end{aligned}$



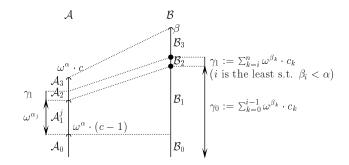
• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.



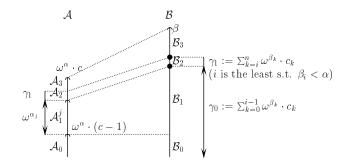
• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.



• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.



• If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.



- If α is limit, choose an increasing seq. $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$.
- If α is successor, we use $\omega^{(\alpha-1)} \cdot j$ instead of ω^{α_j} .
- $\mathcal{A}_0 \simeq \mathcal{B}_0 \simeq \omega^{\alpha} \cdot (c-1)$ and $\mathcal{A}_2 \simeq \mathcal{B}_2 \simeq \gamma_1$.
- $\mathcal{A}_1^j \simeq \omega^{\alpha_j}, \mathcal{B}_1 \simeq \gamma_0; \mathcal{A}_3 \simeq \omega^{\alpha}, \mathcal{B}_3 \text{ is } \omega^{\alpha}\text{-closed.}$

(L, <_L): a linear order
Define the linear order
$$\omega^{L} = (CNF(L), \leq_{\omega^{L}})$$
 as follows:
CNF(L) = { $(\lambda_{i}, c_{i})_{i < n} \in (L \times \omega)^{<\omega} : (\forall i) \ \lambda_{i+1} <_{L} \ \lambda_{i}$ },
 $(\lambda_{i}, c_{i})_{i < n} \leq_{\omega^{L}} (\lambda'_{j}, c'_{j})_{j < m} \iff (\exists k < m, n) \text{ s.t.}$
 $(\forall i < k) \ \lambda_{i} = \lambda'_{i} \text{ and}$
 $\lambda_{k} <_{L} \ \lambda'_{k} \text{ or } (\lambda_{k} = \lambda'_{k} \text{ and } c_{i} \leq c^{*}_{i}).$

- Inductively define $\exp^0(L) = L$ and $\exp^{n+1}(L) = \omega^{\exp^n(L)}$.
- Define $\varepsilon(L)$ by $\sum_{n \in \omega} \exp^n(L)$.

(L, <_L): a linear order
Define the linear order
$$\omega^{L} = (CNF(L), \leq_{\omega^{L}})$$
 as follows:
• $CNF(L) = \{(\lambda_{i}, c_{i})_{i < n} \in (L \times \omega)^{<\omega} : (\forall i) \ \lambda_{i+1} <_{L} \ \lambda_{i}\},$
• $(\lambda_{i}, c_{i})_{i < n} \leq_{\omega^{L}} (\lambda'_{j}, c'_{j})_{j < m} \iff (\exists k < m, n) \text{ s.t.}$
• $(\forall i < k) \ \lambda_{i} = \lambda'_{i} \text{ and}$
• $\lambda_{k} <_{L} \ \lambda'_{k} \text{ or } (\lambda_{k} = \lambda'_{k} \text{ and } c_{i} \leq c^{*}_{i}).$

• If **L** is not well-ordered, then so is ω^{L} .

•
$$L \in WO$$
, $(\lambda_i, c_i)_{i < n} \approx \sum_{i < n} \omega^{\lambda_i} \cdot c_i$

• $L \in WO$, otype $(L) = \alpha \Rightarrow$ otype $(\omega^L) = \omega^{\alpha}$.

• Inductively define $\exp^0(L) = L$ and $\exp^{n+1}(L) = \omega^{\exp^n(L)}$.

• Define
$$\varepsilon(L)$$
 by $\sum_{n \in \omega} \exp^n(L)$.

Proof of $E_{ck} \leq_{eff}^{cone} E_{wo}$

- \mathcal{H}^{x} : Harrison's pseudo well order relative to **x** whose order type is $\omega_{1}^{x} \cdot (1 + \eta)$.
- **2** Given z and $x \leq_T z$, define $f(x) := \varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))$.

Proof of $E_{ck} \leq_{off}^{cone} E_{wo}$

- \mathcal{H}^{x} : Harrison's pseudo well order relative to **x** whose order type is $\omega_{1}^{x} \cdot (1 + \eta)$.
- **2** Given z and $x \leq_T z$, define $f(x) := \varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))$.
- If $\omega_1^{\mathbf{x}} = \omega_1^{\mathbf{z}}$, then $\mathcal{H}^{\mathbf{x}}$ is isomorphic to $\mathcal{H}^{\mathbf{z}}$.
 - ⇒ the KB ordering on T(H^x, H^z) is not well-ordered; therefore, f(x) ∉ WO.

Proof of $E_{ck} \leq_{off}^{cone} E_{wo}$

- \mathcal{H}^{x} : Harrison's pseudo well order relative to **x** whose order type is $\omega_{1}^{x} \cdot (1 + \eta)$.
- **2** Given z and $x \leq_T z$, define $f(x) := \varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))$.

3 If
$$\omega_1^{\mathbf{x}} = \omega_1^{\mathbf{z}}$$
, then $\mathcal{H}^{\mathbf{x}}$ is isomorphic to $\mathcal{H}^{\mathbf{z}}$.

- ⇒ the KB ordering on T(H^x, H^z) is not well-ordered; therefore, f(x) ∉ WO.
- If $\omega_1^x < \omega_1^z, \, \omega \cdot \omega_1^x \le \operatorname{rank}(T(\mathcal{H}^x, \mathcal{H}^z)) \le \omega^{\omega_1^x + 2}$.
 - $\varepsilon(\omega \cdot \omega_1^x)$ is isomorphic to $\varepsilon(\omega^{\omega_1^{\omega_1^{x+2}}})$.
 - Hence, $otype(\varepsilon(KB(T(\mathcal{H}^{x},\mathcal{H}^{z})))) = \varepsilon(\omega_{1}^{x}).$
 - Thus, $\omega_1^x = \omega_1^y < \omega_1^z$ implies $f(x) \approx f(y) \approx \varepsilon(\omega_1^x) = \varepsilon(\omega_1^y)$.

Proof of $E_{ck} \leq_{off}^{cone} E_{wo}$

- \mathcal{H}^{x} : Harrison's pseudo well order relative to **x** whose order type is $\omega_{1}^{x} \cdot (1 + \eta)$.
- **2** Given z and $x \leq_T z$, define $f(x) := \varepsilon(\text{KB}(T(\mathcal{H}^x, \mathcal{H}^z)))$.

3 If
$$\omega_1^{\mathbf{x}} = \omega_1^{\mathbf{z}}$$
, then $\mathcal{H}^{\mathbf{x}}$ is isomorphic to $\mathcal{H}^{\mathbf{z}}$.

 ⇒ the KB ordering on T(H^x, H^z) is not well-ordered; therefore, f(x) ∉ WO.

$$If \omega_1^{\mathsf{x}} < \omega_1^{\mathsf{z}}, \, \omega \cdot \omega_1^{\mathsf{x}} \le \operatorname{rank}(T(\mathcal{H}^{\mathsf{x}}, \mathcal{H}^{\mathsf{z}})) \le \omega_1^{\omega_1^{\mathsf{x}} + 2}.$$

•
$$\varepsilon(\omega \cdot \omega_1^x)$$
 is isomorphic to $\varepsilon(\omega^{\omega_1^{\omega_1^{x+2}}})$

- Hence, $otype(\varepsilon(KB(T(\mathcal{H}^{x},\mathcal{H}^{z})))) = \varepsilon(\omega_{1}^{x}).$
- Thus, $\omega_1^x = \omega_1^y < \omega_1^z$ implies $f(x) \approx f(y) \approx \varepsilon(\omega_1^x) = \varepsilon(\omega_1^y)$.

3 Thus,
$$\omega_1^x = \omega_1^y \iff f(x), f(y) \notin WO \text{ or } f(x) \approx f(y).$$

Proof of "V = L implies $E_{ck} <_{eff}^{cone} E_{wo}$ "

• Weitkamp (1982): If **V** is a generic extension of **L**, then the following set contains no Turing cone:

 $\{x \in 2^{\omega} : \omega_1^x \text{ is a recursively inaccessible ordinal}\}.$

• Given r, choose $z \ge_T r$ s.t. ω_1^z is NOT rec. inaccessible.

Proof of "V = L implies $E_{ck} <_{eff}^{cone} E_{wo}$ "

• Weitkamp (1982): If **V** is a generic extension of **L**, then the following set contains no Turing cone:

 $\{x \in 2^{\omega} : \omega_1^x \text{ is a recursively inaccessible ordinal}\}.$

- Given r, choose $z \ge_T r$ s.t. ω_1^z is NOT rec. inaccessible.
- Then, for any admissible ordinal $\alpha \leq \omega_1^z$, there is a $\Pi_1^1(z)$ set $P_\alpha \subseteq 2^\omega$ such that $\{x \leq_T z : \omega_1^x = \alpha\} = P_\alpha \cap \{x \in 2^\omega : x \leq_T z\}.$

Proof of "V = L implies $E_{ck} <_{eff}^{cone} E_{wo}$ "

• Weitkamp (1982): If **V** is a generic extension of **L**, then the following set contains no Turing cone:

 $\{x \in 2^{\omega} : \omega_1^x \text{ is a recursively inaccessible ordinal}\}.$

- Given r, choose $z \ge_T r$ s.t. ω_1^z is NOT rec. inaccessible.
- Then, for any admissible ordinal $\alpha \leq \omega_1^z$, there is a $\Pi_1^1(z)$ set $P_\alpha \subseteq 2^\omega$ such that $\{x \leq_T z : \omega_1^x = \alpha\} = P_\alpha \cap \{x \in 2^\omega : x \leq_T z\}.$
- Thus, there is no z-effective reduction from E_{wo} to E_{ck} since {x ≤ z : x ∉ WO} is Σ¹₁(z)-complete.

Non-orbit analytic equivalence relations:

 $xE_{wo}y : \iff$ either $x, y \notin WO$ or x and y are isomorphic as w.o. $xE_{ck}y : \iff \omega_1^x = \omega_1^y$ holds.

Fact

- (Gao) E_{wo} and E_{ck} are \leq_B -incomparable.
- (Coskey-Hamkins 2011) E_{wo} and E_{ck} are \leq_{ITTM} -bireducible.

Theorem

•
$$E_{ck} \leq_{eff}^{cone} E_{wo}$$
.
• If $V = L$, then $E_{ck} <_{eff}^{cone} E_{wo}$.

Conjecture

If \mathbf{x}^{\sharp} exists for any real \mathbf{x} , then $\mathbf{E}_{ck} \equiv_{eff}^{cone} \mathbf{E}_{wo}$.

Smooth Equivalence Relations

 Δ_X : the equality (X, =) on a topological space X.

 \leq_B (\leq_c , resp.): Borel (continuous, resp.) reducibility.

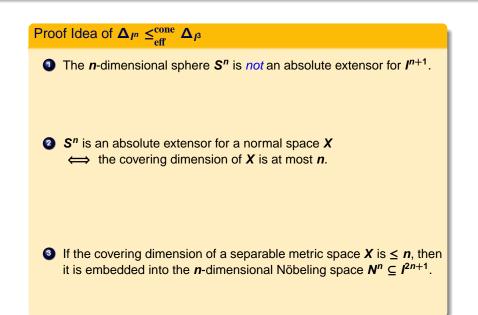
• $\Delta_X \equiv_B \Delta_Y$ whenever X and Y are uncountable standard Borel spaces. In particular, $\Delta_{2^{\omega}} \equiv_B \Delta_{I^{\omega}} \equiv_B \Delta_{I^{\omega}}$

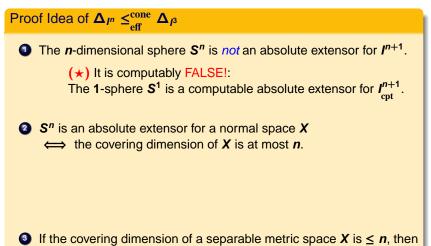
$$2 \Delta_{2^{\omega}} <_{c} \Delta_{I} <_{c} \Delta_{I^{2}} <_{c} \cdots <_{c} \cdots <_{c} \Delta_{I^{n}} <_{c} \Delta_{I^{n+1}} < \Delta_{I^{\omega}}.$$

Theorem

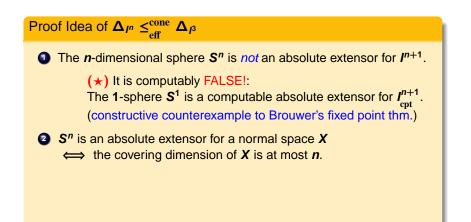
Remark

- $\Delta_X \leq_{\text{eff}} \Delta_Y$ iff \exists a Markov computable injection
 - $f: X_{\rm cpt} \to Y_{\rm cpt}.$
- (Kreisel-Lacombe-Shoenfield) *f* : (ω^ω)_{cpt} → (ω^ω)_{cpt} is Markov computable iff it is computable in the sense of TTE.
- (de Brecht) X has a total admissible representation iff X is quasi-Polish.
- Hence, whenever X and Y are quasi-Polish, $\Delta_X \leq_{\text{eff}} \Delta_Y$ iff there is a TTE-computable injection $f : X_{\text{cpt}} \rightarrow Y_{\text{cpt}}$.

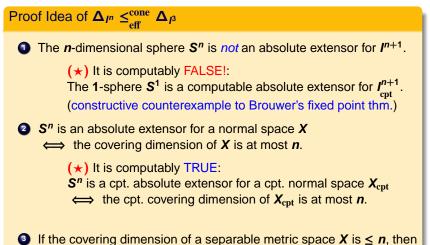




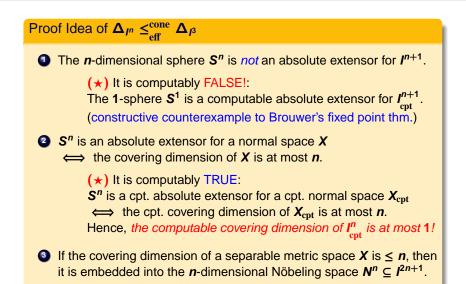
it is embedded into the *n*-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.

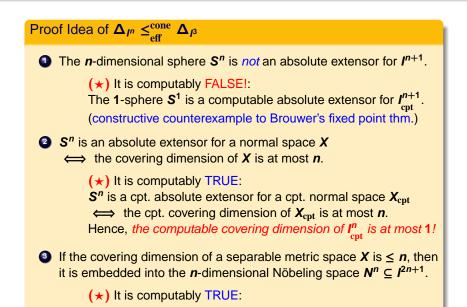


If the covering dimension of a separable metric space X is ≤ n, then it is embedded into the n-dimensional Nöbeling space Nⁿ ⊆ I²ⁿ⁺¹.



it is embedded into the *n*-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$.





Proof Idea of $\Delta_{I^n} \leq_{\text{off}}^{\text{cone}} \Delta_{I^3}$ • The *n*-dimensional sphere S^n is *not* an absolute extensor for I^{n+1} . (★) It is computably FALSE!: The 1-sphere S^1 is a computable absolute extensor for I_{out}^{n+1} . (constructive counterexample to Brouwer's fixed point thm.) Sⁿ is an absolute extensor for a normal space X \iff the covering dimension of **X** is at most **n**. (*) It is computably TRUE: S^n is a cpt. absolute extensor for a cpt. normal space X_{cpt} \iff the cpt. covering dimension of X_{cpt} is at most n. Hence, the computable covering dimension of In is at most 1! If the covering dimension of a separable metric space X is $\leq n$, then it is embedded into the *n*-dimensional Nöbeling space $N^n \subseteq I^{2n+1}$. (★) It is computably TRUE:

Hence, I_{opt}^n is computably embedded into $N^1 \subseteq I^3$.