An effective perfect-set theorem

David Belanger, joint with Keng Meng (Selwyn) Ng

CTFM 2016 at Waseda University, Tokyo

Institute for Mathematical Sciences National University of Singapore

The perfect set theorem for closed sets

For closed sets

If F is an uncountable, closed subset of 2^{ω} , then F contains a homeomorphic copy of 2^{ω} .

For trees

If T is a binary tree with uncountably many paths, then T contains a homeomorphic copy P of the full binary tree $2^{<\omega}$.

- This is provable in ATR₀. (Simpson)
- If Cantor-Bendixson rank is α , then $P \leq_T \mathbf{0}^{(2\alpha+1)}$.
- Computable trees have C-B rank $\leq \omega_1^{CK}$, and this limit is attained. (Kreisel)
- The Cantor-Bendixson theorem is equivalent to Π_1^1 -CA₀. (H. Friedman)

Basic motivation: Draw or exploit an analogy between the Perfect Set Theorem and Weak König's Lemma.

The perfect set theorem for closed sets

For closed sets

If F is an uncountable, closed subset of 2^{ω} , then F contains a homeomorphic copy of 2^{ω} .

For trees

If T is a binary tree with uncountably many paths, then T contains a homeomorphic copy P of the full binary tree $2^{<\omega}$.

- This is provable in ATR₀. (Simpson)
- If Cantor-Bendixson rank is α , then $P \leq_T \mathbf{0}^{(2\alpha+1)}$.
- Computable trees have C-B rank $\leq \omega_1^{CK}$, and this limit is attained. (Kreisel)
- The Cantor-Bendixson theorem is equivalent to Π₁¹-CA₀. (H. Friedman)

Basic motivation: Draw or exploit an analogy between the Perfect Set Theorem and Weak König's Lemma.

Question

How difficult is the problem: Given a computable tree T with uncountably many paths, find a perfect subtree?

- The usual reduction of ATR₀ to this problem works by coding into a countable Π⁰₁ class—countable, but not effectively countable.
- We restrict ourselves to trees of finite Cantor-Bendixson rank.
- A weaker version of our results can be derived from Cenzer, Clote, Smith, Soare, Wainer: "Members of countable Π⁰₁ classes."

Question

How difficult is the problem: Given a computable tree T with uncountably many paths, find a perfect subtree?

- The usual reduction of ATR₀ to this problem works by coding into a countable Π⁰₁ class—countable, but not effectively countable.
- We restrict ourselves to trees of finite Cantor-Bendixson rank.
- A weaker version of our results can be derived from Cenzer, Clote, Smith, Soare, Wainer: "Members of countable Π⁰₁ classes."

Example 0

Let T be any (nonempty, computable, binary) tree with no dead ends and no isolated paths. Then T is a perfect subtree of itself.

Example $\frac{1}{2}$

Suppose T is the union of a perfect tree and some 'dead-end' pieces, i.e., some σ satisfying:

 $(\exists \ell > |\sigma|)[\sigma \text{ has no extensions in T of length } \ell].$

Since the halting set 0' can detect these pieces, 0' is strong enough to compute the perfect subtree.

A converse to Example $\frac{1}{2}$

Proposition

There is a computable T consisting of a perfect tree and some dead-end pieces such that any perfect subtree $P \subseteq T$ computes the halting set $\mathbf{0}'$.

Proof.

Recall the definition of the Halting Set

 $0' = \{e \in \omega : \text{the e-th Turing machine halts}\},\$

and its recursive approximation

 $0'_s = \{e < s : \text{the e-th TM halts in } < \text{s steps}\},\$

and its least modulus function

$$m_{0'}(x) = \mu s.[0' \upharpoonright x = 0'_s \upharpoonright x].$$

A converse to Example $\frac{1}{2}$

Proof (continued).

$$m_{0'}(x) = \mu s. [0' \upharpoonright x = 0'_s \upharpoonright x].$$

- Construct a tree with exactly 2^x nodes at level $m_{0'}(x) + x$, each with two extensions at level $m_{0'}(x+1) + x + 1$.
- There is a perfect subtree by definition.
- Now suppose $P \subseteq T$ is perfect; then the function

 $f(x) = \mu \ell$.[P has $\geq 2^x$ many nodes at level ℓ]

dominates $m_{0'}(x)$ and hence can be used to compute 0'.

For closed sets

If *F* is closed, define $\partial F = F - \{\text{isolated points of } F\}$. If α is least such that $\delta^{\alpha+1}F = \delta_{\alpha}F$, we say *F* has Cantor-Bendixson rank α .

Famously used to prove:

Cantor-Bendixson Theorem

Every closed F has rank $< \omega_1$; in particular, F is a union of a perfect set and a countable set.

We are concerned with Π_1^0 classes of finite rank.

Theorem (Folklore)

If T is a tree whose paths [T] have rank n, then $0^{(2n+1)}$ can find a perfect subtree, where $0^{(1)} = 0'$ is the Halting Problem, $0^{(2)} = 0''$ is the relativized 'Halting Problem's halting problem,' etc.

Proof.

 \bullet Use 0" to trim off the roots of isolated paths:

 $\{\sigma: (\forall \ell_1 > |\sigma|)(\exists \ell_2 > \ell_1) | at most one \ \tau \supset \sigma \ at level \ \ell_1 \ has$

an extension at level ℓ_2].

• Use $0^{(4)}$ to iterate this process a second time.

.

- Use $0^{(2n)}$ to remove all isolated paths.
- Use one more jump to remove the remaining dead-ends. Now we have our perfect tree.

Rank as an upper bound, part 2

Theorem (Folklore)

If T is a tree whose paths [T] have rank n, then $0^{(2n+1)}$ can find a perfect subtree.

Alternate proof.

- Use 0' to remove dead-ends σ as in Example ¹/₂: (∃ℓ > |σ|)[σ has no extensions of length ℓ].
- Use 0" to remove roots σ of isolated paths, which is now simpler:

 $(\forall \ell > |\sigma|)[\sigma \text{ has at most one extension of length } \ell].$

 \bullet Use $0^{\prime\prime\prime}$ to remove the new dead ends.

- Use $0^{(2n)}$ to remove the last isolated paths.
- Use $0^{(2n+1)}$ to remove the last dead ends.

Now we have our perfect tree.

Cantor-Bendixson rank as a lower bound

For trees

- If T is a tree whose paths [T] have rank n then:
 - T has rank *n* if *T* has no isolated paths;
 - T has rank $n\frac{1}{2}$ otherwise.

You can also define rank using an appropriate half-derivative.

Main Theorem

If T has rank $q \in \{0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, \ldots\}$, then $\mathbf{0}^{(2q)}$ is exactly enough to find a perfect subtree.

- We have seen this for q = 0 and $q = \frac{1}{2}$.
- We have seen that **0**^(2q) is an upper bound.
- Remains to show that $\mathbf{0}^{(2q)}$ is necessary for $q \ge 1$.

Cantor-Bendixson rank as a lower bound

For trees

- If T is a tree whose paths [T] have rank n then:
 - T has rank *n* if *T* has no isolated paths;
 - T has rank $n\frac{1}{2}$ otherwise.

You can also define rank using an appropriate half-derivative.

Main Theorem

If T has rank $q \in \{0, \frac{1}{2}, 1, 1\frac{1}{2}, 2, \ldots\}$, then $\mathbf{0}^{(2q)}$ is exactly enough to find a perfect subtree.

- We have seen this for q = 0 and $q = \frac{1}{2}$.
- We have seen that $\mathbf{0}^{(2q)}$ is an upper bound.
- Remains to show that $\mathbf{0}^{(2q)}$ is necessary for $q \ge 1$.

Proof outline

Recall: T rank $n\frac{1}{2}$ means [T] rank n and T has dead ends.

Lemma 0

There is a $0^{(n)}$ -computable tree T of rank $\frac{1}{2}$ with uncountably many paths such that every perfect subtree computes $0^{(n+1)}$.

_emma 🛓

If T is a 0'-computable tree of rank $\frac{1}{2}$, there is a computable tree T^* of rank 1 such that every perfect subtree of T^* computes a perfect subtree of T.

_emma

As above, with T of rank 1 and T^* of rank $1\frac{1}{2}$.

Start with T as in Lemma 0. Alternate between versions of Lemma $\frac{1}{2}$ and Lemma 1 until you get a computable T^* of rank n/2 whose perfect subtrees each compute $0^{(n+1)}$.

Proof outline

Recall: T rank $n\frac{1}{2}$ means [T] rank n and T has dead ends.

Lemma 0

There is a $0^{(n)}$ -computable tree T of rank $\frac{1}{2}$ with uncountably many paths such that every perfect subtree computes $0^{(n+1)}$.

Lemma $\frac{1}{2}$

If T is a 0'-computable tree of rank $\frac{1}{2}$, there is a computable tree T^* of rank 1 such that every perfect subtree of T^* computes a perfect subtree of T.

Lemma 1

As above, with T of rank 1 and T^* of rank $1\frac{1}{2}$.

Start with T as in Lemma 0. Alternate between versions of Lemma $\frac{1}{2}$ and Lemma 1 until you get a computable T^* of rank n/2 whose perfect subtrees each compute $0^{(n+1)}$.

Proof outline

Recall: T rank $n\frac{1}{2}$ means [T] rank n and T has dead ends.

Lemma 0

There is a $0^{(n)}$ -computable tree T of rank $\frac{1}{2}$ with uncountably many paths such that every perfect subtree computes $0^{(n+1)}$.

Lemma $\frac{1}{2}$

If T is a 0'-computable tree of rank $\frac{1}{2}$, there is a computable tree T^* of rank 1 such that every perfect subtree of T^* computes a perfect subtree of T.

Lemma 1

As above, with T of rank 1 and T^* of rank $1\frac{1}{2}$.

Start with T as in Lemma 0. Alternate between versions of Lemma $\frac{1}{2}$ and Lemma 1 until you get a computable T^* of rank n/2 whose perfect subtrees each compute $0^{(n+1)}$.

Lemma 0

There is a $0^{(n)}$ -computable tree T of rank $\frac{1}{2}$ with uncountably many paths such that every perfect subtree computes $0^{(n+1)}$.

Proof.

- Let $m_{0^{(n+1)}}$ be the least modulus function of $0^{(n+1)}$ when approximated using $0^{(n)}$ as an oracle.
- Similar to before, construct a 0⁽ⁿ⁾-computable tree with exactly 2^x nodes at each level m_{0(n+1)}(x) + x, each with exactly two extensions at m_{0(n+1)}(x + 1) + x + 1.
- Then every perfect subtree computes a function dominating m_{0(n+1)}.
- Such a function computes 0⁽ⁿ⁺¹⁾. (Proof: First show it computes 0', then that it computes 0'', etc.)

Lemma 0

There is a $0^{(n)}$ -computable tree T of rank $\frac{1}{2}$ with uncountably many paths such that every perfect subtree computes $0^{(n+1)}$.

Proof.

- Let $m_{0^{(n+1)}}$ be the least modulus function of $0^{(n+1)}$ when approximated using $0^{(n)}$ as an oracle.
- Similar to before, construct a 0⁽ⁿ⁾-computable tree with exactly 2^x nodes at each level m_{0(n+1)}(x) + x, each with exactly two extensions at m_{0(n+1)}(x + 1) + x + 1.
- Then every perfect subtree computes a function dominating m_{0(n+1)}.
- Such a function computes 0⁽ⁿ⁺¹⁾. (Proof: First show it computes 0', then that it computes 0'', etc.)

Lemma $\frac{1}{2}$

If T is a 0'-computable tree of rank $\frac{1}{2}$, there is a computable tree T^* of rank 1 such that every perfect subtree of T^* computes a perfect subtree of T.

- Let $(T_s)_{s \in \omega}$ be a recursive approximation to T.
- We build T^* as a ternary tree in $\{0, 1, b\}^{<\omega}$.
- For every finite or infinite string σ ∈ {0, 1, b}^{<ω}, let σ̄ denote the string you get after removing all b.
- Example: If $\sigma = 01bbb11b01b$ then $\bar{\sigma} = 011101$.
- **1** Put the empty string \emptyset into T^* .
- **2** If $\sigma \in T^*$ and $\bar{\sigma} 0 \in T_{|\sigma|}$, put $\sigma 0$ into T^* .
- 3 If $\sigma \in T^*$ and $\bar{\sigma}1 \in T_{|\sigma|}$, put $\sigma1$ into T^* .
- 4 If $\sigma \in T^*$ and neither case applies, put σb into T^* .

Lemma $\frac{1}{2}$

If T is a 0'-computable tree of rank $\frac{1}{2}$, there is a computable tree T^* of rank 1 such that every perfect subtree of T^* computes a perfect subtree of T.

1 Put the empty string
$$\emptyset$$
 into T^* .
2 If $\sigma \in T^*$ and $\bar{\sigma} 0 \in T_{|\sigma|}$, put $\sigma 0$ into T^* .
3 If $\sigma \in T^*$ and $\bar{\sigma} 1 \in T_{|\sigma|}$, put $\sigma 1$ into T^* .
4 If $\sigma \in T^*$ and neither case applies, put σb into T^* .

• Every
$$g \in [T]$$
 equals \overline{f} for a unique $f \in [T^*]$.

- If $g_1, g_2 \in [T]$ then $g_1 = \overline{f_1}$ and $g_2 = \overline{f_2}$, and $\overline{f_1 \cap f_2} = g_1 \cap g_2$, where $\cdot \cap \cdot$ denotes the longest common initial segment.
- If $f \in [T^*]$ equals σb^{ω} , then f isolated above σ .
- If f ∈ [T*] is not of this form, then f
 = g for some g ∈ [T].
 No dead ends.

Lemma 1

If T is a 0'-computable tree of rank 1, there is a computable tree T^* of rank $1\frac{1}{2}$ such that every perfect subtree of T^* computes a perfect subtree of T.

- Watch the computable approximation $(T_s)_s$ to T.
- We may assume no *T_s* has dead ends.
- Build T^* together with partial embeddings $\psi_s : T_s \to T^*$, with pointwise limit ψ .
- If $\sigma = \sigma_0 i \in T_s \cap T_{s+1}$ has different successors in T_{s+1} than in T_s , reassign $\psi_{s+1}(\sigma)$ to a maximal extension of $\psi_s(\sigma_0)$ in T_s^* , and add the appropriate successors to $\psi_{s+1}(\sigma)$ in T_{s+1} .
- 2 Do not extend τ ∈ T^{*}_s which are not an initial segment of some ψ_{s+1}(σ).

Lemma 1

If T is a 0'-computable tree of rank 1, there is a computable tree T^* of rank $1\frac{1}{2}$ such that every perfect subtree of T^* computes a perfect subtree of T.

- I If $\sigma = \sigma_0 i \in T_s \cap T_{s+1}$ has different successors in T_{s+1} than in T_s , reassign $\psi_{s+1}(\sigma)$ to a maximal extension of $\psi_s(\sigma_0)$ in T_s^* , and add the appropriate successors to $\psi_{s+1}(\sigma)$ in T_{s+1} .
- Do not extend τ ∈ T^{*}_s which are not an initial segment of some ψ_{s+1}(σ).
- For every path $g \in [T^*]$ there is a unique $f \in [T]$ such that $\psi(\sigma) \subseteq g$ for every $\sigma \subseteq f$.
- For every pair f_1, f_2 , the image $\psi(f_1 \cap f_2)$ is approximately $\psi(f_1) \cap \psi(f_2)$.
- If P ⊆ T is perfect, we may use its splits to solve for the perfect tree ψ⁻¹(P).

Future work.

Question

What is the exact difficulty of the perfect set problem for limit ranks $\lambda < \omega_1^{CK}$?

- Can you code 0^(ω) or other *H*-sets directly into the trees?
- Given a uniform sequence of trees *T*₀, *T*₁,... can you combine them into a single tree, with smallish rank, whose perfect set problem solves those of every *T_k*?

Question

What about rank ω_1^{CK} ? (Possible, due to Kreisel.)

Question

What about Σ_1^1 classes in place of Π_1^0 classes?

The end.