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The perfect set theorem for closed sets

For closed sets

If F is an uncountable, closed subset of 2ω, then F contains a
homeomorphic copy of 2ω.

For trees

If T is a binary tree with uncountably many paths, then T
contains a homeomorphic copy P of the full binary tree 2<ω.

This is provable in ATR0. (Simpson)
If Cantor-Bendixson rank is α, then P ≤T 0(2α+1).
Computable trees have C-B rank ≤ ωCK

1 , and this limit is
attained. (Kreisel)
The Cantor-Bendixson theorem is equivalent to Π1

1-CA0. (H.
Friedman)

Basic motivation: Draw or exploit an analogy between the Perfect
Set Theorem and Weak König’s Lemma.
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Basic question for today

Question

How difficult is the problem: Given a computable tree T with
uncountably many paths, find a perfect subtree?

The usual reduction of ATR0 to this problem works by coding
into a countable Π0

1 class—countable, but not effectively
countable.

We restrict ourselves to trees of finite Cantor-Bendixson rank.

A weaker version of our results can be derived from Cenzer,
Clote, Smith, Soare, Wainer: “Members of countable Π0

1

classes.”
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Examples of the perfect-set problem

Example 0

Let T be any (nonempty, computable, binary) tree with no dead
ends and no isolated paths. Then T is a perfect subtree of itself.

Example 1
2

Suppose T is the union of a perfect tree and some ‘dead-end’
pieces, i.e., some σ satisfying:

(∃` > |σ|)[σ has no extensions in T of length `].

Since the halting set 0′ can detect these pieces, 0′ is strong
enough to compute the perfect subtree.



A converse to Example 1
2

Proposition

There is a computable T consisting of a perfect tree and some
dead-end pieces such that any perfect subtree P ⊆ T computes
the halting set 0′.

Proof.

Recall the definition of the Halting Set

0′ = {e ∈ ω : the e-th Turing machine halts},

and its recursive approximation

0′s = {e < s : the e-th TM halts in < s steps},

and its least modulus function

m0′(x) = µs.[0′ � x = 0′s � x ].



A converse to Example 1
2

Proof (continued).

m0′(x) = µs.[0′ � x = 0′s � x ].

Construct a tree with exactly 2x nodes at level m0′(x) + x ,
each with two extensions at level m0′(x + 1) + x + 1.

There is a perfect subtree by definition.

Now suppose P ⊆ T is perfect; then the function

f (x) = µ`.[P has ≥ 2x many nodes at level `]

dominates m0′(x) and hence can be used to compute 0′.



The Cantor-Bendixson derivative and rank

For closed sets

If F is closed, define ∂F = F − {isolated points of F}.
If α is least such that δα+1F = δαF , we say F has
Cantor-Bendixson rank α.

Famously used to prove:

Cantor-Bendixson Theorem

Every closed F has rank < ω1; in particular, F is a union of a
perfect set and a countable set.

We are concerned with Π0
1 classes of finite rank.



Rank as an upper bound

Theorem (Folklore)

If T is a tree whose paths [T ] have rank n, then 0(2n+1) can find a
perfect subtree, where 0(1) = 0′ is the Halting Problem, 0(2) = 0′′

is the relativized ‘Halting Problem’s halting problem,’ etc.

Proof.

• Use 0′′ to trim off the roots of isolated paths:

{σ : (∀`1 > |σ|)(∃`2 > `1)[at most one τ ⊃ σ at level `1 has

an extension at level `2]}.
• Use 0(4) to iterate this process a second time.

...
...

...
...

...
...

...
...

...
...

• Use 0(2n) to remove all isolated paths.
• Use one more jump to remove the remaining dead-ends.
Now we have our perfect tree.



Rank as an upper bound, part 2

Theorem (Folklore)

If T is a tree whose paths [T ] have rank n, then 0(2n+1) can find a
perfect subtree.

Alternate proof.

• Use 0′ to remove dead-ends σ as in Example 1
2 :

(∃` > |σ|)[σ has no extensions of length `].

• Use 0′′ to remove roots σ of isolated paths, which is now simpler:

(∀` > |σ|)[σ has at most one extension of length `].

• Use 0′′′ to remove the new dead ends.
...

...
...

...
...

...
...

...
...

...
• Use 0(2n) to remove the last isolated paths.
• Use 0(2n+1) to remove the last dead ends.
Now we have our perfect tree.



Cantor-Bendixson rank as a lower bound

For trees

If T is a tree whose paths [T ] have rank n then:

T has rank n if T has no isolated paths;

T has rank n 1
2 otherwise.

You can also define rank using an appropriate half-derivative.

Main Theorem

If T has rank q ∈ {0, 1
2 , 1, 11

2 , 2, . . .}, then 0(2q) is exactly
enough to find a perfect subtree.

We have seen this for q = 0 and q = 1
2 .

We have seen that 0(2q) is an upper bound.

Remains to show that 0(2q) is necessary for q ≥ 1.



Cantor-Bendixson rank as a lower bound

For trees

If T is a tree whose paths [T ] have rank n then:

T has rank n if T has no isolated paths;

T has rank n 1
2 otherwise.

You can also define rank using an appropriate half-derivative.

Main Theorem

If T has rank q ∈ {0, 1
2 , 1, 11

2 , 2, . . .}, then 0(2q) is exactly
enough to find a perfect subtree.

We have seen this for q = 0 and q = 1
2 .

We have seen that 0(2q) is an upper bound.

Remains to show that 0(2q) is necessary for q ≥ 1.



Proof outline

Recall: T rank n 1
2 means [T ] rank n and T has dead ends.

Lemma 0

There is a 0(n)-computable tree T of rank 1
2 with uncountably

many paths such that every perfect subtree computes 0(n+1).

Lemma 1
2

If T is a 0′-computable tree of rank 1
2 , there is a computable tree

T ∗ of rank 1 such that every perfect subtree of T ∗ computes a
perfect subtree of T .

Lemma 1

As above, with T of rank 1 and T ∗ of rank 11
2 .

Start with T as in Lemma 0. Alternate between versions of
Lemma 1

2 and Lemma 1 until you get a computable T ∗ of rank

n/2 whose perfect subtrees each compute 0(n+1).
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Proving the theorem

Lemma 0

There is a 0(n)-computable tree T of rank 1
2 with uncountably

many paths such that every perfect subtree computes 0(n+1).

Proof.

Let m0(n+1) be the least modulus function of 0(n+1) when
approximated using 0(n) as an oracle.

Similar to before, construct a 0(n)-computable tree with
exactly 2x nodes at each level m0(n+1)(x) + x , each with
exactly two extensions at m0(n+1)(x + 1) + x + 1.

Then every perfect subtree computes a function dominating
m0(n+1) .

Such a function computes 0(n+1). (Proof: First show it
computes 0′, then that it computes 0′′, etc.)
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Proving the theorem

Lemma 1
2

If T is a 0′-computable tree of rank 1
2 , there is a computable tree

T ∗ of rank 1 such that every perfect subtree of T ∗ computes a
perfect subtree of T .

Let (Ts)s∈ω be a recursive approximation to T .

We build T ∗ as a ternary tree in {0, 1, b}<ω.

For every finite or infinite string σ ∈ {0, 1, b}<ω, let σ̄ denote
the string you get after removing all b.

Example: If σ = 01bbb11b01b then σ̄ = 011101.

1 Put the empty string ∅ into T ∗.

2 If σ ∈ T ∗ and σ̄0 ∈ T|σ|, put σ0 into T ∗.

3 If σ ∈ T ∗ and σ̄1 ∈ T|σ|, put σ1 into T ∗.

4 If σ ∈ T ∗ and neither case applies, put σb into T ∗.



Proving the theorem

Lemma 1
2
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3 If σ ∈ T ∗ and σ̄1 ∈ T|σ|, put σ1 into T ∗.

4 If σ ∈ T ∗ and neither case applies, put σb into T ∗.

Every g ∈ [T ] equals f̄ for a unique f ∈ [T ∗].

If g1, g2 ∈ [T ] then g1 = f̄1 and g2 = f̄2, and f1 ∩ f2 = g1 ∩ g2,
where · ∩ · denotes the longest common initial segment.

If f ∈ [T ∗] equals σbω, then f isolated above σ.

If f ∈ [T ∗] is not of this form, then f̄ = g for some g ∈ [T ].

No dead ends.



Proving the theorem

Lemma 1

If T is a 0′-computable tree of rank 1, there is a computable tree
T ∗ of rank 11

2 such that every perfect subtree of T ∗ computes a
perfect subtree of T .

Watch the computable approximation (Ts)s to T .

We may assume no Ts has dead ends.

Build T ∗ together with partial embeddings ψs : Ts → T ∗,
with pointwise limit ψ.

1 If σ = σ0i ∈ Ts ∩ Ts+1 has different successors in Ts+1 than
in Ts , reassign ψs+1(σ) to a maximal extension of ψs(σ0) in
T ∗s , and add the appropriate successors to ψs+1(σ) in Ts+1.

2 Do not extend τ ∈ T ∗s which are not an initial segment of
some ψs+1(σ).
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perfect subtree of T .
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in Ts , reassign ψs+1(σ) to a maximal extension of ψs(σ0) in
T ∗s , and add the appropriate successors to ψs+1(σ) in Ts+1.

2 Do not extend τ ∈ T ∗s which are not an initial segment of
some ψs+1(σ).

For every path g ∈ [T ∗] there is a unique f ∈ [T ] such that
ψ(σ) ⊆ g for every σ ⊆ f .
For every pair f1, f2, the image ψ(f1 ∩ f2) is approximately
ψ(f1) ∩ ψ(f2).
If P ⊆ T is perfect, we may use its splits to solve for the
perfect tree ψ−1(P).



Future work.

Question

What is the exact difficulty of the perfect set problem for limit
ranks λ < ωCK

1 ?

Can you code 0(ω) or other H-sets directly into the trees?

Given a uniform sequence of trees T0,T1, . . . can you combine
them into a single tree, with smallish rank, whose perfect set
problem solves those of every Tk?

Question

What about rank ωCK
1 ? (Possible, due to Kreisel.)

Question

What about Σ1
1 classes in place of Π0

1 classes?

The end.


