Minimal Degrees in Models of Weak Subsystems of Arithmetic

C T Chong

National University of Singapore

chongct@math.nus.edu.sg

21 September 2016

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

X has minimal degree if every $Y <_{T} X$ is recursive.

- Spector (1957) first constructed a set of minimal degree.
- Sacks (1961) constructed a minimal degree < 0'.
- Typical construction of a set of minimal degree applies the "tree method".

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

X has minimal degree if every $Y <_T X$ is recursive.

- Spector (1957) first constructed a set of minimal degree.
- Sacks (1961) constructed a minimal degree < 0'.
- Typical construction of a set of minimal degree applies the "tree method".

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Definition

X has minimal degree if every $Y <_T X$ is recursive.

Spector (1957) first constructed a set of minimal degree.

- Sacks (1961) constructed a minimal degree < 0'.
- Typical construction of a set of minimal degree applies the "tree method".

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

X has minimal degree if every $Y <_T X$ is recursive.

- Spector (1957) first constructed a set of minimal degree.
- Sacks (1961) constructed a minimal degree < 0'.
- Typical construction of a set of minimal degree applies the "tree method".

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

X has minimal degree if every $Y <_T X$ is recursive.

- Spector (1957) first constructed a set of minimal degree.
- Sacks (1961) constructed a minimal degree < 0'.
- Typical construction of a set of minimal degree applies the "tree method".

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

There are two possibilities:

- **1** (Splitting tree) Every $\tau \in Sp(e, T)$ has a (least) pair of incomparable extensions. in Sp(e, T). Let $T_e = Sp(e, T)$. Then if $X \in [T_e]$, $\Phi_e^X \equiv_T X$;
- 2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T) (i.e. a dead end). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

There are two possibilities:

- 1 (Splitting tree) Every $\tau \in Sp(e, T)$ has a (least) pair of incomparable extensions. in Sp(e, T). Let $T_e = Sp(e, T)$. Then if $X \in [T_e]$, $\Phi_e^X \equiv_T X$;
- 2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T) (i.e. a dead end). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

There are two possibilities:

 (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions. in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;

2 (Full tree) There is a $\tau \in Sp(e, T)$ with no extension in Sp(e, T) (i.e. a dead end). Let $T_e = \{\tau' \in T : \tau' \succeq \tau\}$. Then any $X \in [T_e]$ satisfies Φ_e^X is partial or Φ_e^X is recursive.

If $\tau_1, \tau_2 \in Sp(e, T)$ are incomparable, then $\Phi_e^{\tau_1}(x) \neq \Phi_e^{\tau_2}(x)$ for some *x*.

There are two possibilities:

- (Splitting tree) Every τ ∈ Sp(e, T) has a (least) pair of incomparable extensions. in Sp(e, T). Let T_e = Sp(e, T). Then if X ∈ [T_e], Φ^X_e ≡_T X;
- [2] (Full tree) There is a τ ∈ Sp(e, T) with no extension in Sp(e, T) (i.e. a dead end). Let T_e = {τ' ∈ T : τ' ≽ τ}. Then any X ∈ [T_e] satisfies Φ^X_e is partial or Φ^X_e is recursive.

Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$.

Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.

The split into (1) or (2) is a \emptyset'' -decision.

• Σ_2^0 induction is sufficient to implement the Spector/Sacks construction.

Question. Is there a set of minimal degree in the absence of Σ_2^0 induction?

Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$.

Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.

- The split into (1) or (2) is a \emptyset'' -decision.
- Σ_2^0 induction is sufficient to implement the Spector/Sacks construction.

Question. Is there a set of minimal degree in the absence of Σ_2^0 induction?

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$.
- Any X ∈ ∩_e [T_e] has minimal degree. There is an X <_T Ø".
 The split into (1) or (2) is a Ø"-decision.
- Σ_2^0 induction is sufficient to implement the Spector/Sacks construction.

Question. Is there a set of minimal degree in the absence of Σ_2^0 induction?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$.
- Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.
- The split into (1) or (2) is a \emptyset'' -decision.
- Σ₂⁰ induction is sufficient to implement the Spector/Sacks construction.

Question. Is there a set of minimal degree in the absence of Σ_2^0 induction?

- Starting with $T = 2^{<\omega}$, define $T_0 \supset T_1 \supset \cdots$.
- Any $X \in \bigcap_{e} [T_{e}]$ has minimal degree. There is an $X <_{T} \emptyset''$.
- The split into (1) or (2) is a \emptyset'' -decision.
- Σ₂⁰ induction is sufficient to implement the Spector/Sacks construction.

Question. Is there a set of minimal degree in the absence of Σ_2^0 induction?

Fix $\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$. Let *I* be a Σ_2^0 cut with a Σ_2^0 cofinal $g : I \to M$.

- (Tame cut) If M ⊨ B∑₂⁰, then g may be chosen to be strictly increasing with a recursive approximation g', i.e. g(i) = lim_s g'(s, i) for i ∈ I.
- (Bitame cut [Chong, Lempp and Yang (2010)]) If 𝔐 ⊨ ¬BΣ₂⁰, then *I*, *g* may be chosen so that *g* is cofinal, strictly increasing on *I*, and (reverse) cofinal, strictly decreasing on *a* \ *I* for some *a* > *I*.

Fix $\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$. Let *I* be a Σ_2^0 cut with a Σ_2^0 cofinal $g : I \to M$.

- (Tame cut) If M ⊨ B∑₂⁰, then g may be chosen to be strictly increasing with a recursive approximation g', i.e. g(i) = lim_s g'(s, i) for i ∈ I.

Fix $\mathfrak{M} = (M, +, \cdot, 0, 1) \models P^- + I\Sigma_1^0 + \neg I\Sigma_2^0$. Let *I* be a Σ_2^0 cut with a Σ_2^0 cofinal $g : I \to M$.

- (Tame cut) If M ⊨ B∑₂⁰, then g may be chosen to be strictly increasing with a recursive approximation g', i.e. g(i) = lim_s g'(s, i) for i ∈ I.
- (Bitame cut [Chong, Lempp and Yang (2010)]) If 𝔐 ⊨ ¬BΣ₂⁰, then *I*, *g* may be chosen so that *g* is cofinal, strictly increasing on *I*, and (reverse) cofinal, strictly decreasing on *a* \ *I* for some *a* > *I*.

- For $i \le a$, let $\Phi_i^{\sigma}(x) = \sigma(x)$ if $x \le |\sigma|$ and $g'(x,i) \ne g'(x+1,i)$, and $\Phi_i^{\sigma}(x) = 0$ otherwise
- Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.
- Let $T = 2^{<M}$ and define $Sp(i, T_i \text{ as before. Then } T_i \text{ is not}$ defined for $i \notin I$.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- For $i \le a$, let $\Phi_i^{\sigma}(x) = \sigma(x)$ if $x \le |\sigma|$ and $g'(x, i) \ne g'(x + 1, i)$, and $\Phi_i^{\sigma}(x) = 0$ otherwise.
- Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.
- Let $T = 2^{<M}$ and define $Sp(i, T_i \text{ as before. Then } T_i \text{ is not}$ defined for $i \notin I$.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

- For $i \le a$, let $\Phi_i^{\sigma}(x) = \sigma(x)$ if $x \le |\sigma|$ and $g'(x, i) \ne g'(x + 1, i)$, and $\Phi_i^{\sigma}(x) = 0$ otherwise.
- Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.
- Let $T = 2^{<M}$ and define $Sp(i, T_i \text{ as before. Then } T_i \text{ is not}$ defined for $i \notin I$.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

For $i \leq a$, let $\Phi_i^{\sigma}(x) = \sigma(x)$ if $x \leq |\sigma|$ and $g'(x,i) \neq g'(x+1,i)$, and $\Phi_i^{\sigma}(x) = 0$ otherwise.

Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.

■ Let $T = 2^{<M}$ and define $Sp(i, T_i \text{ as before. Then } T_i \text{ is not}$ defined for $i \notin I$.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

For $i \le a$, let $\Phi_i^{\sigma}(x) = \sigma(x)$ if $x \le |\sigma|$ and $g'(x, i) \ne g'(x + 1, i)$, and $\Phi_i^{\sigma}(x) = 0$ otherwise.

Then for $i \in I$, T_i is a full tree with root of length $\geq g(i)$.

■ Let $T = 2^{<M}$ and define $Sp(i, T_i \text{ as before. Then } T_i \text{ is not}$ defined for $i \notin I$.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree $<_T \emptyset'$ or $<_T \emptyset''$ in \mathfrak{M} ?

$X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- (Chong and Mourad 1990) There is an $\mathfrak{M} \models B\Sigma_2^0$ in which $\omega = I$ is a set of minimal degree.
- $I <_T \emptyset''$ and nonregular.
- If 𝔐 ⊨ IΣ₁⁰ is countable, then there is a regular set X of minimal degree. But X may not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question. Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

- $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.
 - (Chong and Mourad 1990) There is an M ⊨ BΣ₂⁰ in which ω = I is a set of minimal degree.
 - $I <_T \emptyset''$ and nonregular.

If 𝔐 ⊨ IΣ₁⁰ is countable, then there is a regular set X of minimal degree. But X may not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question. Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

- $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.
 - (Chong and Mourad 1990) There is an $\mathfrak{M} \models B\Sigma_2^0$ in which $\omega = I$ is a set of minimal degree.
 - I < $T \otimes U''$ and nonregular.
 - If 𝔐 ⊨ IΣ₁⁰ is countable, then there is a regular set X of minimal degree. But X may not be definable.

(日) (日) (日) (日) (日) (日) (日)

Refined Question. Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

 $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- (Chong and Mourad 1990) There is an $\mathfrak{M} \models B\Sigma_2^0$ in which $\omega = I$ is a set of minimal degree.
- $I <_T \emptyset''$ and nonregular.
- If 𝔐 ⊨ IΣ₁⁰ is countable, then there is a regular set X of minimal degree. But X may not be definable.

Refined Question. Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

 $X \subset M$ is *regular* if $X \upharpoonright s$ is \mathfrak{M} -finite for every $s \in M$.

- (Chong and Mourad 1990) There is an $\mathfrak{M} \models B\Sigma_2^0$ in which $\omega = I$ is a set of minimal degree.
- I < $T \otimes M''$ and nonregular.
- If 𝔐 ⊨ *I*Σ₁⁰ is countable, then there is a regular set *X* of minimal degree. But *X* may not be definable.

Refined Question. Is there a *regular* set of minimal degree $<_T \emptyset''$ or $<_T \emptyset'?$

Minimal Degrees in $\neg I \Sigma_2$

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. Every regular set of minimal degree $<_T \emptyset''$ in \mathfrak{M} is low, i.e. if $X <_T \emptyset''$ has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

There is a model \mathfrak{M} of $P^- + I\Sigma_1^0 + \neg B\Sigma_2^0$ with a set X of minimal degree $<_T \emptyset'$ preserving $I\Sigma_1^0$, i.e, $\mathfrak{M}[X] \models I\Sigma_1^0$. In particular,

RCA₀ + "There is a minimal degree"

does not imply $B\Sigma_2^0$.

Minimal Degrees in $\neg I \Sigma_2$

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. Every regular set of minimal degree $<_T \emptyset''$ in \mathfrak{M} is low, i.e. if $X <_T \emptyset''$ has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

There is a model \mathfrak{M} of $P^- + I\Sigma_1^0 + \neg B\Sigma_2^0$ with a set X of minimal degree $<_T \emptyset'$ preserving $I\Sigma_1^0$, i.e, $\mathfrak{M}[X] \models I\Sigma_1^0$. In particular,

RCA₀ + "There is a minimal degree"

(日) (日) (日) (日) (日) (日) (日)

does not imply $B\Sigma_2^0$.

Minimal Degrees in $\neg I \Sigma_2$

Theorem

Let $\mathfrak{M} \models P^- + B\Sigma_2^0 + \neg I\Sigma_2^0$. Every regular set of minimal degree $<_T \emptyset''$ in \mathfrak{M} is low, i.e. if $X <_T \emptyset''$ has minimal degree, then $X <_T \emptyset'$ and $X' \equiv_T \emptyset'$.

Theorem

There is a model \mathfrak{M} of $P^- + I\Sigma_1^0 + \neg B\Sigma_2^0$ with a set X of minimal degree $<_T \emptyset'$ preserving $I\Sigma_1^0$, i.e, $\mathfrak{M}[X] \models I\Sigma_1^0$. In particular,

RCA₀ + "There is a minimal degree"

does not imply $B\Sigma_2^0$.

$\text{RCA}_0 + \textit{B}\Sigma_2^0 + \neg\textit{I}\Sigma_2^0 + \text{``There is a minimal degree"'?}$

More generally,

Question. Given a finite partial ordering \mathbb{P} , is there a model of $\operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ whose second order elements are isomorphic to \mathbb{P} under Turing reducibility?

- It is not known if there is a minimal \aleph_{ω}^{L} -degree.
- It is not known if, for X minimal, $X <_{\alpha} \emptyset''$ implies $X <_{\alpha} \emptyset'$, where $\alpha = \aleph_{\omega}^{L}$, although in this case every set below \emptyset' is low.

 $RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$ "There is a minimal degree"?

More generally,

Question. Given a finite partial ordering \mathbb{P} , is there a model of $\operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ whose second order elements are isomorphic to \mathbb{P} under Turing reducibility?

- It is not known if there is a minimal \aleph_{ω}^{L} -degree.
- It is not known if, for X minimal, $X <_{\alpha} \emptyset''$ implies $X <_{\alpha} \emptyset'$, where $\alpha = \aleph_{\omega}^{L}$, although in this case every set below \emptyset' is low.

$$RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$$
"There is a minimal degree"?

More generally,

Question. Given a finite partial ordering \mathbb{P} , is there a model of $\operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ whose second order elements are isomorphic to \mathbb{P} under Turing reducibility?

- It is not known if there is a minimal \aleph_{ω}^{L} -degree.
- It is not known if, for X minimal, $X <_{\alpha} \emptyset''$ implies $X <_{\alpha} \emptyset'$, where $\alpha = \aleph_{\omega}^{L}$, although in this case every set below \emptyset' is low.

$$RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$$
"There is a minimal degree"?

More generally,

Question. Given a finite partial ordering \mathbb{P} , is there a model of $\operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ whose second order elements are isomorphic to \mathbb{P} under Turing reducibility?

Comparison With α -recursion:

It is not known if there is a minimal \aleph_{ω}^{L} -degree.

It is not known if, for X minimal, $X <_{\alpha} \emptyset''$ implies $X <_{\alpha} \emptyset'$, where $\alpha = \aleph_{\omega}^{L}$, although in this case every set below \emptyset' is low.

$$RCA_0 + B\Sigma_2^0 + \neg I\Sigma_2^0 +$$
"There is a minimal degree"?

More generally,

Question. Given a finite partial ordering \mathbb{P} , is there a model of $\operatorname{RCA}_0 + B\Sigma_2^0 + \neg I\Sigma_2^0$ whose second order elements are isomorphic to \mathbb{P} under Turing reducibility?

- It is not known if there is a minimal \aleph_{ω}^{L} -degree.
- It is not known if, for X minimal, X <_α Ø" implies X <_α Ø', where α = ℵ^L_ω, although in this case every set below Ø' is low.