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X has minimal degree if every Y <1 X is recursive.

m Spector (1957) first constructed a set of minimal degree.
m Sacks (1961) constructed a minimal degree < 0'.

m Typical construction of a set of minimal degree applies the
“tree method”.
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The Tree Method

Given @, and an infinite recursive tree T c 2<%, define by
recursion the splitting subree Sp(e, T) C T such that

m If 71,7 € Sp(e, T) are incomparable, then ¢ (x) # dg(x)
for some x.

There are two possibilities:

(Splitting tree) Every 7 € Sp(e, T) has a (least) pair of
incomparable extensions. in Sp(e, T). Let To = Sp(e, T).
Thenif X € [Te], X =7 X;

(Full tree) There is a 7 € Sp(e, T) with no extension in
Sp(e, T) (i.e.adeadend). Let To={r" € T: 7" = 7}.
Then any X € [T,] satisfies ®J is partial or ®J is recursive.
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The Tree Method

m Starting with T = 2<%, define Ty > Ty D ---.

m Any X €, [Te] has minimal degree. There is an X <7 0".

m The split into (1) or (2) is a ()""-decision.

m ¥ induction is sufficient to implement the Spector/Sacks
construction.

Question. Is there a set of minimal degree in the absence of £
induction?
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Fix M = (M, +,-,0,1) = P~ + [£9 + ~/%S. Let / be a £J cut
with a 3 cofinal g : | — M.
m (Tame cut) If 90 = B, then g may be chosen to be
strictly increasing with a recursive approximation g,
i.e. g(i) =limg g'(s,i)forie I.
m (Bitame cut [Chong, Lempp and Yang (2010)]) If
M = ﬁBzg, then I, g may be chosen so that g is cofinal,
strictly increasing on /, and (reverse) cofinal, strictly
decreasing on a\ / for some a > |.
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Fix I, g, a as above.
m For/ < a, let ®7(x) = o(x) if x < |o| and
g (x,0)# g'(x +1,i),and ¢7(x) = 0 otherwise.
m Then for i € I, T; is a full tree with root of length > g(/).

m Let T =2<M and define Sp(i, T; as before. Then T; is not
defined for i ¢ 1.

Hence the Spector/Sacks construction fails.

Question. Is there a set of minimal degree <1 (" or <7 0" in M?
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X C M is regularif X | sis 9M-finite for every s € M.

m (Chong and Mourad 1990) There is an 9t = B in which
w = [ is a set of minimal degree.

m / <71 (" and nonregular.

mIfmE= IZ? is countable, then there is a regular set X of
minimal degree. But X may not be definable.

Refined Question. |s there a regular set of minimal degree
<7 0"or<y0?
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Theorem

Let9 (= P~ + BY + —~Ix3. Every regular set of minimal
degree <71 0" in M is low, i.e. if X <t ("’ has minimal degree,
then X <7 0 and X' =1 0.

Theorem

There is a model M of P~ + X9 + —~B¥.3 with a set X of minimal
degree <1 (' preserving IZ9, i.e, M[X] = IZ9. In particular,

RCA, + “There is a minimal degree”

does not imply BE).



Minimal Degree in —/%3

Question. |Is there a model of

RCAg + BX + /T3 + “There is a minimal degree”?



Minimal Degree in —/%3

Question. |Is there a model of

RCAg + BX + /T3 + “There is a minimal degree”?

More generally,

Question. Given a finite partial ordering P, is there a model of
RCA( + B + ~/% whose second order elements are
isomorphic to P under Turing reducibility?



Minimal Degree in —/%3

Question. |Is there a model of

RCAg + BX + /T3 + “There is a minimal degree”?

More generally,

Question. Given a finite partial ordering P, is there a model of
RCA( + B + ~/% whose second order elements are
isomorphic to P under Turing reducibility?

Comparison With a-recursion:



Minimal Degree in —/%3

Question. |Is there a model of

RCAg + BX + /T3 + “There is a minimal degree”?

More generally,

Question. Given a finite partial ordering P, is there a model of
RCA( + B + ~/% whose second order elements are
isomorphic to P under Turing reducibility?

Comparison With a-recursion:

m It is not known if there is a minimal X5 -degree.



Minimal Degree in —/%3

Question. |Is there a model of

RCAg + BX + /T3 + “There is a minimal degree”?

More generally,

Question. Given a finite partial ordering P, is there a model of
RCA( + B + ~/% whose second order elements are
isomorphic to P under Turing reducibility?

Comparison With a-recursion:

m It is not known if there is a minimal X5 -degree.

m It is not known if, for X minimal, X <, 0" implies X <, ¢,
where o = XL although in this case every set below (I’ is
low.



