Size-change termination in reverse mathematics

Emanuele Frittaion

(joint work with Silvia Steila, Keita Yokoyama, and Florian Pelupessy)

CiE 2016

Size-Change Termination (SCT) is a termination property that can be automatically verified.

SCT was introduced and studied by Lee, Jones, Ben-Amram 2001 in the context of **first-order functional programs**.

SCT first-order functional programs correspond to **multiply recursive** functions (Ben-Amram 2002).

Loosely speaking, a program is SCT if any infinite **call sequence** would cause an infinite descending sequence in some well-founded domain.

If a program does not terminate, then there exists an infinite call sequence. Thus SCT is a sufficient condition for **termination**.

Theorem (SCT criterion)

Let G be a **description** of a program P.

Then \mathcal{G} is SCT iff every idempotent $G \in cl(\mathcal{G})$ has an arc $x \xrightarrow{\downarrow} x$.

A description is a finite set of size-change graphs.

Theorem (Termination of SCT programs)

If P is SCT (i.e. P has a **safe** SCT description) then P is terminating.

For a reverse mathematics analysis...

Definition

- \mathcal{G} is **MSCT** (Multipath-Size-Change Terminating) if \mathcal{G} is SCT.
- \mathcal{G} is **ISCT** (Idempotent-Size-Change Terminating) if every idempotent $G \in \operatorname{cl}(\mathcal{G})$ has an arc $x \xrightarrow{\downarrow} x$.

Definition

- P is **MSCT** if P has a **safe** MSCT decription.
- *P* is **ISCT** if *P* has a **safe** ISCT description.

Theorem (SCT criterion)

Let G be a description of a program P. Then G is MSCT iff G is ISCT.

Theorem (SCT criterion for graphs)

Let G be a finite set of size-change graphs. Then G is MSCT iff G is ISCT.

Theorem (Termination of SCT programs) If P is M(I)SCT then P is terminating.

Summary of results

 $\mathsf{I}\Sigma^0_2 = \mathsf{SCT}$ criterion $= \mathsf{SCT}$ criterion for graphs

 $WO(\omega^{\omega}) \leq$ Termination of MSCT programs \leq Termination of ISCT programs \leq ?

 $WO(\omega^{\omega^{\omega}}) \leq \text{ Termination of ISCT programs}$

Syntax

```
x \in \operatorname{Var}
f \in \operatorname{Fun}
op \in \operatorname{Op}
a \in \operatorname{AExp} ::= x \mid x+1 \mid x-1 \mid op(a,\ldots,a) \mid f(a,\ldots,a)
b \in \operatorname{BExp} ::= x = 0 \mid x = 1 \mid x < y \mid x \le y \mid b \land b \mid b \lor b \mid \neg b
e \in \operatorname{Exp} ::= a \mid \mathbf{if} \ b \ \mathbf{then} \ e \ \mathbf{else} \ e
def \in \operatorname{Def} ::= f(x_0,\ldots,x_{n-1}) = e
p \in \operatorname{Prog} ::= def_0,\ldots,def_{m-1}
```

A **program** *P* is a list of finitely many equations

$$f(x_0,\ldots,x_{n-1})=e^f$$

where $f \in \text{Fun}$ and e^f is an expression (the **body** of f). We call x_0, \ldots, x_{n-1} the **parameters** of f and denot it by Var(f).

Example (Peter-Ackermann)

$$A(x,y) =$$
if $x = 0$ then $y + 1$
else if $y = 0$ then $A(x - 1, 1)$
else $A(x - 1, A(x, y - 1))$

Definition (Size-Change graph)

Let $f, g \in \text{Fun}$, and $\text{Var}(f), \text{Var}(g) \subseteq \text{Var}$. A size-change graph $G: f \to g$ for P is a bipartite directed graph on (Var(f), Var(g)).

The set of edges is a subset of $Var(f) \times Var(g) \times \{\downarrow, \downarrow\}$ such that there is at most one edge to any $y \in Var(g)$. We say that f is the **source** function of G and g is the **target** function of G.

We write $x \xrightarrow{\downarrow} y$ for the **decreasing** edge (x, y, \downarrow) , and $x \xrightarrow{\psi} y$ for the **nonincreasing** edge (x, y, \downarrow) .

The idea is that a size-change graph describes the relations between a function f and a function g when f calls g in the execution of a program P.

Example (Peter-Ackermann)

$$A(x,y) =$$
if $x = 0$ then $y + 1$
else if $y = 0$ then $\tau_0 : A(x - 1, 1)$
else $\tau_1 : A(x - 1, \tau_2 : A(x, y - 1))$

SCT criterion 00000000

Description of $\tau_0: A \to A$

Description of $\tau_2: A \to A$

$$x \xrightarrow{\downarrow} x$$

$$x \longrightarrow x$$

$$y \longrightarrow y$$

Definition (composition)

Given two size-change graphs $G_0: f \to g$ and $G_1: g \to h$ we define their **composition** G_0 ; $G_1: f \to h$. The composition of two edges $x \xrightarrow{\psi} y$ and $y \xrightarrow{\psi} z$ is one edge $x \xrightarrow{\psi} z$. In all other cases the composition of two edges from x to y and from y to z is the edge $x \xrightarrow{\downarrow} z$.

We say that the size-change graph G is **idempotent** if G; G = G.

Given a finite set of size-change graphs \mathcal{G} , $cl(\mathcal{G})$ is the smallest set which contains \mathcal{G} and is closed by composition.

A **multipath** \mathcal{M} is a sequence G_0, \ldots, G_n, \ldots of size-change graphs such that the target function of G_i is the source function of G_{i+1} . A **thread** is a connected path of edges in \mathcal{M} that starts at some G_t , where $t \in \mathbb{N}$. A multipath \mathcal{M} has an **infinite descent** if some thread in \mathcal{M} contains infinitely many decreasing edges.

Definition (description)

A **description** of P is a set of size-change graphs

$$G = \{G_{\tau} : \tau \text{ call of } P\}$$

Definition

A set of size-change graphs \mathcal{G} is **MSCT** if every infinite multipath G_0, \ldots, G_n, \ldots of graphs of \mathcal{G} has an infinite descent.

A set of size-change graphs \mathcal{G} is **ISCT** every idempotent $G \in cl(\mathcal{G})$ has an arc $x \stackrel{\downarrow}{\rightarrow} x$

Theorem (SCT criterion)

Let G be a description of program P. Then G is MSCT iff G is ISCT.

Theorem (SCT criterion for graphs)

Let \mathcal{G} be a finite set of size-change graphs. Then \mathcal{G} is MSCT iff \mathcal{G} is ISCT.

SCT criterion is about graphs

Given a finite set \mathcal{G} of size-change graphs, it is straighforward to define a program P such that \mathcal{G} is a description of P.

Proposition (RCA₀)

The following are equivalent:

- SCT criterion;
- SCT criterion for graphs.

Proving SCT criterion

Proposition (RCA₀)

Let $\mathcal G$ be a finite set of size-change graphs. If every multipath $M=G_0,\ldots,G_n,\ldots$ has an infinite descent, then every idempotent $\mathcal G\in cl(\mathcal G)$ has an arc $x\stackrel{\downarrow}{\to} x$.

Proof.

Finite pigeonhole principle.

For the other direction, we introduce:

 STAR_k For every $c: [\mathbb{N}]^2 \to k$ there exist a number $t \in \mathbb{N}$ and a color $i \in k$ such that

$$(\exists^{\infty} n, m)(t < n < m \land c(t, n) = c(t, m) = c(n, m) = i)$$

Let $STAR = \forall kSTAR_k$. $STAR_k$ is a consequence of:

 RT^2_k For every $c: [\mathbb{N}]^2 \to k$ there exist an infinite set $H \subseteq \mathbb{N}$ and a color $i \in k$ such that

$$(\forall t, n \in X)(t < n \to c(t, n) = i)$$

Remark

 RCA_0 proves $STAR_k$ for any standard k.

Theorem

Ove RCA₀ the following are equivalent:

- $I\Sigma_2^0$;
- STAR:
- SCT criterion.

By Yokoyama and Slaman (unpublished) RT^2 is Π_1^1 -conservative over $B\Sigma_3^0$. It is known that $B\Sigma_3^0$ is $\widetilde{\Pi}_4^0$ -conservative over $I\Sigma_2^0$ (Parsons 1970). The principle STAR is $\widetilde{\Pi}_{4}^{0}$.

Termination of SCT programs

Definition

- P is MSCT if P has a safe MSCT decription G.
- P is ISCT if P has a safe ISCT description G.

Over RCA₀, MSCT implies ISCT. Over RCA₀ + I Σ_2^0 , they are equivalent.

Theorem (Termination of SCT programs)

If P is M(I)SCT then P is terminating.

Over RCA₀, "termination of ISCT programs implies termination of MSCT programs". Over RCA₀ + $I\Sigma_2^0$, they are equivalent.

Semantics

To define safety and termination we need a semantics.

- Denotational: can't do in RCA₀
- Operational: can do in RCA₀ and straighforward
- TRS (Term Rewrite System): can do in RCA₀, straighforward, but not "natural"

An operational semantics consists of **rules** to derive statements of the form $f(u_0, \ldots, u_{n-1}) \downarrow v$, with $u_i, v \in \mathbb{N}$.

The rules depends on the program P and the **interpretation** of the functions in Op(P).

Termination is a Π_2^0 property.

$$\frac{t_0 \downarrow v_0 \dots t_{n-1} \downarrow v_{n-1}}{op(t_0, \dots, t_{n-1}) \downarrow \mathbf{op}(v_0, \dots, v_{n-1})} (op)$$

$$\frac{t_i \downarrow v_i \quad f(v_0, \dots, v_i, \dots, t_{n-1}) \downarrow v}{f(v_0, \dots, v_{i-1}, t_i, \dots, t_{n-1}) \downarrow v} (fun)$$

$$\frac{e^f[v_0, \dots, v_{n-1}] \downarrow v}{f(v_0, \dots, v_{n-1}) \downarrow v} (call)$$

All v's are natural numbers. In (fun) we have $t_i \notin \mathbb{N}$.

The **terms** t on the left-hand side of a statement $t \downarrow v$ are built up from natural numbers, function and operation variables. We can dispense with boolean terms because they are decidable.

For instance the term (if 2 < 0 then t_0 else t_1) is just t_1 .

P **terminates** on **input u** if there exists a derivation of $f(\mathbf{u}) \downarrow v$ for some $v \in \mathbb{N}$.

Proposition (RCA_0)

- If d is a derivation of t ↓ v and d' is a derivation of t ↓ v', then d = d'.
- If $t \downarrow$ and s is a subterm of t, then $s \downarrow$.

The semantics is pretty standard. See for instance Winskel: The formal semantics of programming languages: An Introduction, 1993).

Our rules are slightly different from Winskel cause we want to make the call relation more "explicit".

The **call relation** $t \rightarrow s$ is defined between **terms**.

For instance, we want $A(2,3) \rightarrow A(1,A(2,2))$.

The call relation is a Σ_1^0 property.

A state transition is $(f, \mathbf{u}) \to (g, \mathbf{v})$, where $f, g \in \operatorname{Fun}(P)$ and \mathbf{u}, \mathbf{v} are (tuples of) natural numbers, and $f(\mathbf{u}) \to g(\mathbf{v})$.

Let P be a program. Given \mathbf{u} , the activation tree $T = T_P^{\mathbf{u}}$ consists of all finite sequences of state transitions

$$(f, \mathbf{u}) \rightarrow (g, \mathbf{v}) \rightarrow \ldots \rightarrow (h, \mathbf{w}) \in T$$

where f is the initial function of P.

The activation tree is Σ_1^0 .

Proposition (RCA₀)

The activation tree $T_P^{\mathbf{u}}$ is finite iff P terminates on \mathbf{u} .

Definition

Let P be a program, $f, g \in \operatorname{Fun}(P)$

$$f(x_0,\ldots,x_{n-1})=e^f$$

$$g(y_0,\ldots,y_{k-1})=e^g$$

Let $G: f \to g$ be a size-change graph on (Var(f), Var(g)). Then G is **safe** if whenever $(f, \mathbf{u}) \rightarrow (g, \mathbf{v})$,

- $x_i \stackrel{\downarrow}{\to} y_i \in G$ implies $u_i > v_i$
- $x_i \stackrel{\Downarrow}{\to} y_i \in G$ implies $u_i > v_i$.

A description \mathcal{G} of a program P is **safe** if every $G \in \mathcal{G}$ is safe.

Proposition (RCA₀)

If P is MSCT, then $T_P^{\mathbf{u}}$ has no infinite branches for all \mathbf{u} .

Proposition (RCA₀)

TFAE:

- ACA₀
- If P does not terminate on \mathbf{u} then $T_P^{\mathbf{u}}$ has an infinite branch.

Lower bounds for termination

Kreuzer and Yokoyama 2016 showed that, over RCA₀,

$$WO(\omega^{\omega})$$
 is equivalent to $\forall f Tot(A_f)$,

where $A_f: \mathbb{N}^2 \to \mathbb{N}$ is the Péter-Ackermann function relativized to $f: \mathbb{N} \to \mathbb{N}$:

$$A_f(x,y) = \text{if } x = 0 \text{ then } f(y)$$

else if $y = 0 \text{ then } A_f(x-1,1)$
else $A_f(x-1,A_f(x,y-1))$

For all $n \geq 2$ and for all $f: \mathbb{N} \to \mathbb{N}$ we define $A_f^n: \mathbb{N}^n \to \mathbb{N}$ such that

Proposition (RCA₀)

- $(\forall f)(A_f^2 \text{ is MSCT})$
- $(\forall n \geq 2)(\forall f)(A_f^n \text{ is ISCT})$
- $(\forall n \geq 1)$, $WO(\omega^{\omega^n})$ is equivalent to $\forall f Tot(A_f^{n+1})$

Theorem (RCA₀)

- "Every ISCT program terminates" implies $WO(\omega^{\omega})$
- "Every MSCT program terminates" implies $WO(\omega^{\omega})$

Upper bounds for termination

Question

What do we need to prove that M(I)SCT programs terminate?

Conjecture

$$RCA_0 + WO(\omega^{\omega^{\omega}}).$$

Every multiply recursive function is bounded by F_{α} for some $\alpha < \omega^{\omega}$.

The fast-growing hierarchy is

$$F_0(x) = x + 1$$

$$F_{\alpha+1}(x) = F_{\alpha}^{(x+1)}(x)$$

$$F_{\lambda}(x) = F_{\lambda[x]}(x)$$

For every $\alpha < \varepsilon_0$, $WO(\omega^{\alpha})$ is equivalent to $\forall f Tot(F_{\alpha,f})$, where $\{F_{\alpha,f}\}$ is the fast-growing hierarchy relative to $f: \mathbb{N} \to \mathbb{N}$.

Corollary (RCA₀)

 $WO(\omega^{\omega^{\omega}})$ is equivalent to $\forall f Tot(F_{\omega^{\omega},f})$.

 $WO(\omega^{\omega^{\omega}})$ implies "every ISCT program terminates"

The original proof goes as follows: if P does not terminate then there exists an infinite call sequence. Such a proof requires ACA_0 .

Tait 1961 proved that nested ordinal recursion of type α can be reduced to unnested ordinal recursion of type ω^{α} .

This is related to the fact that $F_{\alpha} = H_{\omega^{\alpha}}$, where the **Hardy** hierarchy is defined by

$$H_0(x) = x$$

$$H_{\alpha+1}(x) = H_{\alpha}(x)$$

$$H_{\lambda}(x) = H_{\lambda[x]}(x)$$

Clearly, WO(α) implies Tot(H_{α}).

Skipping the details, the proof of Tait shows how to assign descending sequences of ordinals to reduction sequences.

For instance, to the sequence

$$A(2,3) \rightarrow A(1,A(2,2)) \rightarrow A(1,A(1,A(2,1))) \rightarrow$$

 $A(1,A(1,A(1,A(1,0)))) \rightarrow A(1,A(1,A(1,A(0,1)))) \rightarrow$
 $A(1,A(1,A(1,2)))$

we assign the ordinals

$$\omega^{\omega 2 + 3} \cdot 2 > \omega^{\omega 2 + 3} + \omega^{\omega 2 + 2} \cdot 2 > \omega^{\omega 2 + 3} + \omega^{\omega 2 + 2} + \omega^{\omega 2 + 1} \cdot 2 > \dots$$

Let
$$f \in \text{Fun}(P)$$
, $\text{Var}(f) = \{x_0, \dots, x_{n-1}\}$.

We say that f has **semantic lexicographic descent** if we can order the parameters $x_{k_0}, \ldots, x_{k_{n-1}}$ so that whenever $(f, \mathbf{u}) \to (f, \mathbf{v})$ we have $(u_{k_0}, \ldots, u_{k_{n-1}}) > (v_{k_0}, \ldots, v_{k_{n-1}})$ in the standard lexicographic ordering of \mathbb{N}^n .

We say that P has **semantic lexicographic descent** if every function in P has semantic lexicographic descent.

semantic lexicographic descent \approx multiply recursive (programming oriented definition)

Ben-Amram 2002 showed that every SCT program P can be effectively transformed into an **equivalent** program P' of the form

(!)
$$f(x_0,...,x_{n-1}) = e^f$$

with semantic lexicographic descent.

Proposition $(\mathsf{RCA}_0 + \mathrm{WO}(\omega^{\omega^{\omega}}))$

If P is (!) and has semantic lexicographic descent, then P terminates.

Proof.

Tait.

Thank you very much for listening