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From now on...

We work in ZFC unless clearly specified.

V is the class of all sets.
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Gödel’s Constructible Hierarchy

.
Theorem (Gödel)
..
......If ZF is consistent, then so is ZFC + GCH.

.
Definition
..

......

L0 = ∅,
Lα+1 = DefFOL

(
(Lα,∈)

)
,

Lγ =
∪
α<γ

Lα (γ is limit),

L =
∪

α∈On

Lα.
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Inner models from logics

.
Definition
..

......

Given a logic L with a definability notion,

L0(L) = ∅,
Lα+1(L) = DefL

(
(Lα(L),∈)

)
,

Lγ(L) =
∪
α<γ

Lα(L) (γ is limit),

L(L) =
∪

α∈On

Lα(L).

.
Question
..
......What is L(L) if L is full 2nd-order logic (SOL)?

.
Answer
..
......HOD!
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What is HOD?

HOD is the class of all hereditarily ordinal definable sets:

x is OD if x is 1st-order definable in the structure (V ,∈) with an
ordinal parameter.

x ∈ HOD if every element of tr.cl.({x}) is OD.
Note: tr.cl.({x}) is the least transitive set y such that x ∈ y .

HOD is a transitive model of ZFC.

HOD is the largest transitive proper class s.t. every set in the model
is OD.

HOD can accommodate all the large cardinals we have so far.

HOD is very “non-absolute” (e.g., for any real x , one can force
“x ∈ HOD” in a set forcing extension).

One cannot decide e.g., whether HOD satisfies CH.
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.
Question
..
......What is the model L(L) if L is full n-th order logic for n ≥ 3?

.
Answer
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Inner models from logics ctd.

.
Question
..
......What about other logics?

Kennedy, Magidor, and Väänänen explored on inner models from first
order logic with “generalized quantifiers”.

In this talk, we will discuss inner models from Boolean valued higher order
logics and Woodin’s Ω-logic.
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Inner models from logics: Goal & Motivation

.
Goal
..

......

Construct a model of set theory which is “close to” HOD but easier to
analyze.

.
Theorem (Woodin)
..

......

Let κ be extendible. Then exactly one of the following holds:
...1 for every regular γ > κ, γ is inaccessible in HOD, OR
...2 for every singular cardinal γ > κ, γ is singular in HOD and
(γ+)HOD = γ+.

.
Definition (Woodin)
..
......HOD Conjecture states that the latter case in the above theorem holds.
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Inner models from logics: Motivation ctd.

...1 HOD Conjecture is connected to the Inner Model Program for a
supercompact cardinal.

...2 HOD Conjecture has an application to the problem on the existence
of non-trivial elementary embeddings from V to itself in ZF.

To solve HOD Conjecture, one would expect a fine analysis of HOD. But
HOD is very “non-absolute”, e.g.,
.
Proposition (Folklore)
..
......For any real x , there is a partial order P such that “x ∈ HOD” in V P .

.
Question
..

......

Can one construct a model of set theory which is “close to” HOD, but
invariant under forcing extensions?
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Boolean valued 2nd-order logic: background

Two semantics for 2nd-order logic:
...1 Full semantics: Highly complex (very powerful), does not enjoy
completeness, ω-compactness.

...2 Henkin semantics: Very simple (very week), enjoys completeness,
ω-compactness.

Boolean valued second order logic is a powerful logic sitting between the
two semantics.
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Boolean valued 2nd-order logic: Boolean valued structures

.
Definition
..

......

Let L be a relational language. A Boolean valued L-structure is a tuple
M = (A,B, {RM

i }) where
...1 A is a nonempty set,
...2 B is a complete Boolean algebra, and
...3 for each n-ary relational symbol Ri in L, RM

i : An → B.

.
Example
..

......

If B = {0, 1}, each RM
i is a relation in 1st-order logic and M is the same

as a 1st-order structure.
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Truth of 2nd-order formulas in Boolean valued structures

Basic idea: “subsets” are functions from A to B.
.
Definition
..

......

Let M = (A,B, {Ri}) be a Boolean valued L-structure. Then we assign
∥ϕ[⃗a, f⃗ ]∥M∈ B to each 2nd-order formula ϕ, a⃗ ∈ <ωA, and f⃗ ∈ <ω(AB) as
follows:

...1 ϕ is Ri (x⃗). Then ∥Ri (x⃗)[⃗a]∥M = RM
i (⃗a).

...2 ϕ is X (x). Then ∥X (x)[a, f ]∥M = f (a).

...3 Boolean combinations are as usual.

...4 ϕ is ∃xψ. Then ∥∃xψ[⃗a, f⃗ ]∥M =
∨

b∈A ∥ψ[b, a⃗, f⃗ ]∥M .

...5 ϕ is ∃Xψ. Then ∥∃Xψ[⃗a, f⃗ ]∥M =
∨

g : A→B ∥ψ[⃗a, g , f⃗ ]∥M .
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Boolean valued 2nd-order logic: Boolean-validity

.
Definition
..

......

Let L be relational. A 2nd-order L-sentence ϕ is Boolean-valid if
∥ϕ∥M = 1 for any Boolean valued L-structure M.

.
Lemma
..

......

A 2nd-order L-sentence ϕ is Boolean-valid if and only if for any 1st-order
L-structure M, a partial order P, and a P-generic filter G over V ,(
M,P(M)V [G ]

)
⊨ ϕ.
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Boolean valued 2nd-order logic: Definability

.
Definition
..

......

...1 For a set A, a⃗ ∈ A<ω, and a second order formula ϕ,
(ϕ, a⃗) is suitable to A if for every element x of A, either ϕ[x , a⃗] or
¬ϕ[x , a⃗] is Boolean valid with the first order universe A.

...2 Let (ϕ, a⃗) be suitable to A. Then a set X ⊆ A is BVSOL-definable via
(ϕ, a⃗) if X is the collection of x ∈ A such that ϕ[x , a⃗] is Boolean valid
with the first order universe A.

...3 Def2b(A) is the collection of BVSOL-definable subsets of A via some
(ϕ, a⃗) suitable to A.

One can introduce the constructible hierarchy & universe w.r.t. BVSOL.
We write L2b

α and L2b for those.
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Inner models from logics: L2b

.
Remark
..
......L
2b is a transitive proper class model of ZF.

.
Question
..
......Is L

2b a model of AC under the existence of large cardinals?

.
Remark
..
......If V = L, then L = L2b = HOD.
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Inner models from logics: L2b ctd.

.
Theorem
..

......

Assuming large cardinals, one can show that

(ω,P(ω),∈, 0, 1,+, ·)L2b ≺ (ω,P(ω),∈, 0, 1,+, ·)V

In particular, Projective Determinacy holds in L2b.

Point: For each formula ϕ for the second order arithmetic, there is a
Skolem function f for ϕ which is definable in the second order arithmetic
s.t. f is invariant under forcing extensions.
.
Theorem
..

......

Assuming large cardinals, one can show that L2b is invariant under set
forcing extensions, i.e., for any poset P, (L2b)V = (L2b)V

P
.
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Inner models from logics: Lnb

One can define Lnb for n ≥ 3 in the same way as L2b.
.
Remark
..

......

...1 Lnb is a transitive proper class model of ZF.

...2 Assuming large cardinals, one can show that Lnb is invariant under set
forcing extensions.

.
Question
..
......What are the relationships between Lmb and Lnb for different m and n?
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Main Results

Let LΩ be the inner model from Woodin’s Ω-logic.
.
Theorem
..

......

Under some assumptions on large cardinals and Woodin’s Ω-logic,
...1

L2b ⊊ L3b = L4b = · · · = Lnb = · · · = LΩ.

...2 The model LΩ is a transitive model of ZFC+GCH.

...3 The model LΩ is “very big” w.r.t. inner model theory & descriptive
set theory.
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...3 The reals in LΩ are exactly those which are ∆2
1(uB) in a countable
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...4 LΩ is A-closed for any universally Baire set A which is Σ2

1(uB).
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Questions

.

......What kind of large cardinals could exist in LΩ?

.
Conjecture
..
......There is NO measurable cardinal in LΩ.

.

......Does (L
Ω
α | α ∈ On) have some kind of condensation property?
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Background: Universally Baire sets

.
Definition
..

......

A set of reals A is universally Baire if for any continuous function f from a
compact Hausdorff space X to the reals, f −1(A) has the property of Baire
in X .

.
Example
..

......

...1 The collection of all uB sets is closed under complements and
countable unions, hence every Borel set is universally Baire.

...2 Every Π1
1-set of reals is universally Baire.

...3 Assuming large cardinals, every definable set of reals in the 2nd-order
arithmetic is universally Baire.
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Background: Σ2
1(uB)

.
Definition
..

......

...1 A formula ϕ is Σ2
1(uB) if it is of the form

(∃A : universally Baire) (ω,P(ω),∈,A, 0, 1,+, ·) ⊨ ψ,

where ψ is a 2nd-order formula.
...2 A set of reals A is Σ2

1(uB) if it is defined by a Σ2
1(uB) formula.

...3 A real x ⊆ ω is ∆2
1(uB) in a countable ordinal if there is a countable

ordinal α such that both x and ω \ x and are Σ2
1(uB) with the

parameter α.
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Universally Baire sets ctd.

.
Remark
..

......

A set of reals A is universally Baire if and only if for any partial order P,
there are trees T ,U on ω × Y for some Y such that

A = p[T ] and ⊩P “p[Ť ] = R \ p[Ǔ]”.

Using this fact and the trees, one can canonically interpret a uB set A in a
set generic extension V [G ] (namely p[T ] in V [G ]). We write AG for this
interpreted set in V [G ].
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Background: Closure under universally Baire sets

.
Definition (A-closure)
..

......

Let A be universally Baire. An ω-model M of ZFC is A-closed if for any
V -generic filter G on a partial order in M,

M[G ] ∩ AG ∈ M[G ].

.
Example
..

......

...1 For an ω-model M of ZFC, the following are equivalent:
...1 M is A-closed for any Π1

1-set A, and
...2 M is well-founded.

...2 For an ω-model M of ZFC, the following are equivalent:
...1 M is A-closed for every Π1

2-set A, and
...2 M is closed under sharps.
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Main results stated again

.
Theorem
..

......

Under some assumptions on large cardinals and Woodin’s Ω-logic,
...1

L2b ⊊ L3b = L4b = · · · = Lnb = · · · = LΩ.

...2 LΩ is a transitive model of ZFC+GCH.

...3 The reals in LΩ are exactly those which are ∆2
1(uB) in a countable

ordinal.
...4 LΩ is A-closed for any universally Baire set A which is Σ2

1(uB).
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Background: Ω-logic

Ω-logic: a logic on generic absoluteness
.
Definition (Ω-validity)
..

......

Let ϕ be a Π2-sentence with a real parameter in set theory.
Then ϕ is Ω-valid if ϕ is true in any set forcing extension.

Main interest: 0Ω = {ϕ | ϕ is Ω-valid}.



. . . . . .

Background: Ω-logic ctd.

.
Example
..

......

...1 (Shoenfield) Any Π1
2-sentence true in V is Ω-valid.

...2 If V = L, then the Π1
3-sentence “Every real is constructible” is not

Ω-valid while it is true in V (= L).
...3 (Woodin) Assuming large cardinals, every statement in the 2nd-order
arithmetic true in V is Ω-valid.

...4 (Steel) Strong forcing axioms such as PFA impliy the same above.

Strong axioms of infinity give us more statements in 0Ω.
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Background: Ω-provability

.
Definition
..

......

Let ϕ be a Π2-sentence with a real parameter in set theory.
Then ϕ is Ω-provable if there is a universally Baire set A such that

(∀M c.t.m. of ZFC) if M is A-closed, then M ⊨ ϕ.

.
Example
..

......

Assuming large cardinals, any statement in the 2nd-order arithmetic true
in V is Ω-provable.
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Background: Ω-Conjecture

.
Definition
..

......

Ω-Conjecture with real parameters states that ϕ is Ω-valid iff ϕ is
Ω-provable for all ϕ.



. . . . . .

Background: the effect of Ω-Conjecture

With Ω-Conjecture, one can reduce an Ω-valid Π2 statement to a Σ2
1 (uB)

.
Remark
..

......

...1 All the reals in the mice known to exist so far are Σ2
1(uB) in a

countable ordinal.
...2 If M is A-closed for every A which is universally Baire and Σ2

1(uB),
then M is closed under all the mouse operators known to exist so far.
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Background: AD+-Conjecture

We would like to make Ω-valid statements definable in Hc+ . So we need:
.
Definition
..

......

AD+-Conjecture states the following:
Suppose A,B are sets of reals such that L(A,R) and L(B,R) are models
of AD+.
Assume also that every set of reals in L(A,R) ∪ L(B,R) is ω1-universally
Baire.
Then either ∆2

1
L(A,R) ⊆ ∆2

1
L(B,R)

or vice versa.

.
Theorem (Woodin)
..

......

...1 Suppose there are a proper class of Woodin cardinals and assume that
AD+-Conjecture holds. Then the set of Ω-provable statements is
definable in Hc+ .

...2 MM implies that AD+-Conjecture holds.
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Inner models from logics: Back to Theorem...

.
Theorem
..

......

Suppose there are a proper class of Woodin cardinals. Assume that the
Ω-Conjecture with real parameters and AD+-Conjecture hold in any set
generic extension. Then

L3b = L4b = · · · = Lnb = · · · .

For the proof, we introduce LΩ from Ω-logic and show that Def3b = DefΩ.
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Inner models from logics: DefΩ

.
Definition
..

......

Let ϕ be a Σ2 formula and ψ be a Π2 formula in the language of set theory.
We say (ϕ, ψ) is a ∆ZFC

2 -pair if

ZFC ⊢ “(∀x⃗) ϕ(x⃗) ↔ ψ(x⃗)”.

.
Definition
..

......

Let A be a first-order structure, a⃗ ∈ A<ω, and (ϕ, ψ) be a ∆ZFC
2 -pair.

Then the triple (ϕ, ψ, a⃗) is suitable to A if for any element x of A, either
ψ[x , a⃗,A] or ¬ϕ[x , a⃗,A] is Ω-valid.
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Inner models from logics: LΩ

.
Definition
..

......

...1 Let (ϕ, ψ, a⃗) be suitable to A. Then a set X ⊆ A is Ω-definable via
(ϕ, ψ, a⃗) if X = {x ∈ A | (∀P: poset) V P ⊨ ϕ[x , a⃗,A]}.

...2 DefΩ(A) is the collection of Ω-definable subset of A via some (ϕ, ψ, a⃗)
suitable to A.

One can define LΩ
α and LΩ in the same way as before.


