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Reverse Mathematics and Induction

Reverse Mathematics

Main Question of Reverse Mathematics: What are the appropriate
axioms for mathematics?

History: 1970’s, Harvey Friedman and Stephen Simpson.

Standard Reference: Subsystems of Second Order Arithmetic, by
Simpson.
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Reverse Mathematics and Induction

Reverse Mathematics

Language: The Language of Second Order Arithmetic.

Model: 〈M,S〉 is a model of Second Order Arithmetic.
M is a model of First Order Arithmetic.

We use ω to denote the standard model of arithmetic.
M may not be standard.

S ⊆ P(M).

Axioms:
Usual axioms of Peano Arithmetic (PA), where the induction is
restricted to Σ0

1 formulas
Set Existence Axioms.
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Reverse Mathematics and Induction

Inductions in Reverse Mathematics

Big Five:
RCA0 ⇐ WKL0 ⇐ ACA0 ⇐ ATR0 ⇐ Π1

1-CA0

WKL0 � First Order = Σ0
1 Induction; ACA0 � First Order = PA.

Induction:

∀x(∀y < x φ(y) ⇒ φ(x))⇒ ∀x (φ(x))

If φ is restricted to Σ0
n formulas, then the induction is called Σ0

n

Induction (Denoted as IΣ0
n, or IΣn for short.)

Similarly, we have IΠn, I∆n.

Main Question on Induction: What are the appropriate inductions for
mathematics?
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Reverse Mathematics and Induction

Inductions Axioms

Bounding:

∀y < x (∃w φ(y ,w))⇒ ∃b (∀y < x ∃w < b φ(y ,w))

If φ is restricted to Σ0
n formulas, then the bounding is called Σ0

n

Bounding (Denoted as BΣ0
n, or BΣn for short.)

Similarly, we have BΠn, B∆n.

Theorem (Kirby and Paris)

IΣn ⇔ IΠn

BΠn ⇔ B∆n+1 ⇔ BΣn+1

IΣn ⇒ BΣn, BΣn+1 ⇒ IΣn, BΣn 6⇒ IΣn
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Ramsey’s Theorem and Ramsey’s Theorem on Trees

Ramsey’s Theorem

X ,H ⊆M.

Let [X ]n be the collection of all subsets of X of size n.

Coloring C : [M]n → k .

Homogenous set H: C � [H ]n is a constant function.

Theorem (Ramsey)

Suppose k , n ≥ 1. Every coloring C : [M]n → k has an infinite
homogenous set.

Notation:
k, n are fixed. RTn

k .
n is fixed. RTn = ∀k RTn

k .

7 / 18



Ramsey’s Theorem and Ramsey’s Theorem on Trees

Ramsey’s Theorem on Trees

2<m: Collection of all (M-finite) binary strings of length < m.

2<M: Collection of all (M-finite) binary strings inM.

X ,H ⊆ 2<M.

Let [X ]n be the collection of all compatible subsets of X of size n.

Coloring C :
[
2<M

]n → k .

Homogenous/Monochromatic tree H: H ∼= 2<m (Order Isomorphic,
m ∈ M⋃{M}) and C � [H ]n is a constant function.

Theorem

Suppose k , n ≥ 1. Every coloring C :
[
2<M

]n → k has an infinite
monochromatic tree.
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Ramsey’s Theorem and Ramsey’s Theorem on Trees

Ramsey’s Theorem on Trees

Notation:
k, n are fixed. TTn

k .
n is fixed. TTn = ∀k TTn

k .

TTn
k ⇒ RTn

k

9 / 18



Ramsey’s Theorem and Ramsey’s Theorem on Trees

TT v.s. RT

Theorem (Logicians)

Axiom First Order Second Order (Over RCA0)

TT1 > BΣ2, ≤ IΣ2 > RCA0 + BΣ2, ⊥ WKL0, < ACA0

RT1 BΣ2 RCA0 + BΣ2

TT2
2 ≥ BΣ2, ≤ IΣ3 > RT2

2, < ACA0

RT2
2 ≥ BΣ2, < IΣ2 > RCA0 + BΣ2, ⊥ WKL0, < ACA0

TTn
k , n ≥ 3, k ≥ 2 PA ACA0

RTn
k PA ACA0
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TT1

TT1 Assuming IΣ2

TT1 ⇒ RT1 ⇒ BΣ2.

IΣ2 ⇒ TT1

Given C :
[
2<M

]
→ k .

Consider the maximal c0 < k such that ∃σ∀τ ⊇ σ(C (τ) ≥ c0).
σ0 is a witness for the c0.
c0 is dense among extensions of σ0.
The monochromatic tree is recursive.
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TT1

Question

Assume BΣ2 + ¬IΣ2 and C :
[
2<M

]
→ k .

Is there an infinite monochromatic tree?

What is the complexity of an monochromatic tree? Is there a
monochromatic tree preserving BΣ2?
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TT1

Density

Theorem (Corduan, Groszek and Mileti)

SupposeM |= BΣ2 + ¬IΣ2. There is k ∈ M with a recursive
C :

[
2<M

]
→ k such that there is no recursive monochromatic tree.

Corollary

RCA0 + BΣ2 6` TT1.

In that coloring C , every color is nowhere dense.
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TT1

Lowness

Theorem (Chong, Li, Wang and Yang)

SupposeM |= BΣ2 + ¬IΣ2. There is k ∈ M with a recursive
C :

[
2<M

]
→ k such that there is no 0′-recursive monochromatic tree.

Corollary

WKL0 + BΣ2 6` TT1.

In that coloring C , no monochromatic tree is low.
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TT1

Existence

Theorem (Chong, Li, Wang and Yang)

SupposeM |= BΣ2 + ¬IΣ2 and C :
[
2<M

]
→ k is recursive. There is a

regular monochromatic tree.

A set X is regular, if X ∩M-finite =M-finite.

Non-definable solution.
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TT1

Complexity

Theorem (Chong, Li, Wang and Yang)

SupposeM |= BΣ2 + ¬IΣ2.

There is k ∈ M with a recursive C :
[
2<M

]
→ k such that there is no

recursive monochromatic tree but there is a low monochromatic tree.

There is k ∈ M with a recursive C :
[
2<M

]
→ k such that there is

no low monochromatic tree but there is a monochromatic tree
preserving BΣ2.

Conjecture

TT1 6` IΣ2.
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Thank you.
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