Ramsey's Theorem on Trees

Wei Li

Joint Work with C. T. Chong, Wei Wang and Yue Yang

matliw@nus.edu.sg

Department of Mathematics, NUS

Computability Theory and Foundations of Mathematics, Tokyo 20 September, 2016

Reverse Mathematics and Induction

2 Ramsey's Theorem and Ramsey's Theorem on Trees

(日) (四) (E) (E) (E) (E) 2/18

Reverse Mathematics

- Main Question of Reverse Mathematics: What are the appropriate axioms for mathematics?
- History: 1970's, Harvey Friedman and Stephen Simpson.
- Standard Reference: Subsystems of Second Order Arithmetic, by Simpson.

Reverse Mathematics

- Language: The Language of Second Order Arithmetic.
- Model: $\langle \mathcal{M}, S \rangle$ is a model of Second Order Arithmetic.
 - $\bullet \ \mathcal{M}$ is a model of First Order Arithmetic.
 - $\bullet\,$ We use ω to denote the standard model of arithmetic.
 - \mathcal{M} may not be standard.
 - $S \subseteq P(\mathcal{M}).$
- Axioms:
 - Usual axioms of Peano Arithmetic (PA), where the induction is restricted to Σ^0_1 formulas
 - Set Existence Axioms.

Inductions in Reverse Mathematics

• Big Five:

•
$$\mathsf{RCA}_0 \Leftarrow \mathsf{WKL}_0 \Leftarrow \mathsf{ACA}_0 \Leftarrow \mathsf{ATR}_0 \Leftarrow \Pi_1^1 \mathsf{-} \mathsf{CA}_0$$

- WKL₀ | First Order = Σ_1^0 Induction; ACA₀ | First Order = PA.
- Induction:

$$\forall x (\forall y < x \phi(y) \Rightarrow \phi(x)) \Rightarrow \forall x (\phi(x))$$

- If ϕ is restricted to Σ_n^0 formulas, then the induction is called Σ_n^0 Induction (Denoted as $I\Sigma_n^0$, or $I\Sigma_n$ for short.)
- Similarly, we have $I\Pi_n$, $I\Delta_n$.
- Main Question on Induction: What are the appropriate inductions for mathematics?

Inductions Axioms

• Bounding:

$$\forall y < x (\exists w \phi(y, w)) \Rightarrow \exists b (\forall y < x \exists w < b \phi(y, w))$$

- If ϕ is restricted to Σ_n^0 formulas, then the bounding is called Σ_n^0 Bounding (Denoted as $B\Sigma_n^0$, or $B\Sigma_n$ for short.)
- Similarly, we have $B\Pi_n$, $B\Delta_n$.

Theorem (Kirby and Paris)

• $I\Sigma_n \Leftrightarrow I\Pi_n$

•
$$B\Pi_n \Leftrightarrow B\Delta_{n+1} \Leftrightarrow B\Sigma_{n+1}$$

• $I\Sigma_n \Rightarrow B\Sigma_n, B\Sigma_{n+1} \Rightarrow I\Sigma_n, B\Sigma_n \neq I\Sigma_n$

Ramsey's Theorem

- $X, H \subseteq \mathcal{M}$.
- Let $[X]^n$ be the collection of all subsets of X of size n.
- Coloring $C: [\mathcal{M}]^n \to k$.
- Homogenous set $H: C \upharpoonright [H]^n$ is a constant function.

Theorem (Ramsey)

Suppose k, $n \ge 1$. Every coloring $C : [\mathcal{M}]^n \to k$ has an infinite homogenous set.

イロト 不得下 イヨト イヨト ヨー のなの

7/18

• Notation:

- k, n are fixed. RT_k^n .
- *n* is fixed. $RT^n = \forall k RT^n_k$.

Ramsey's Theorem on Trees

- $2^{<m}$: Collection of all (*M*-finite) binary strings of length < m.
- $2^{<\mathcal{M}}$: Collection of all (*M*-finite) binary strings in \mathcal{M} .
- X, $H \subseteq 2^{<\mathcal{M}}$.
- Let $[X]^n$ be the collection of all **compatible** subsets of X of size n.

• Coloring
$$C: \left[2^{<\mathcal{M}}\right]^n \to k.$$

• Homogenous/Monochromatic tree $H: H \cong 2^{\leq m}$ (Order Isomorphic, $m \in \mathcal{M} \cup \{\mathcal{M}\}$) and $C \upharpoonright [H]^n$ is a constant function.

Theorem

Suppose k, $n \ge 1$. Every coloring $C : [2^{<M}]^n \to k$ has an infinite monochromatic tree.

Ramsey's Theorem on Trees

- Notation:
 - k, n are fixed. TT_k^n .
 - *n* is fixed. $TT^n = \forall k \ TT^n_k$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへで

9/18

• $\mathsf{TT}_k^n \Rightarrow \mathsf{RT}_k^n$

TT v.s. RT

Theorem (Logicians)

Axiom	First Order	Second Order (Over RCA ₀)
TT ¹	$> B\Sigma_2, \leq I\Sigma_2$	$> RCA_0 + B\Sigma_2, \perp WKL_0, < ACA$
RT ¹	$B\Sigma_2$	$RCA_0 + B\Sigma_2$
TT_2^2	$\geq B\Sigma_2, \leq I\Sigma_3$	$> RT_2^2$, $< ACA_0$
RT_2^2	\geq B Σ_2 , < I Σ_2	$>$ RCA $_0$ + B Σ_2 , \perp WKL $_0$, $<$ ACA
$TT_{k}^{n}, n \geq 3, k \geq 2$	PA	ACA ₀
RT_k^n	PA	ACA ₀

I

TT¹

$\mathsf{T}\mathsf{T}^1$ Assuming $I\Sigma_2$

- $\mathsf{T}\mathsf{T}^1 \Rightarrow \mathsf{R}\mathsf{T}^1 \Rightarrow B\Sigma_2.$
- $I\Sigma_2 \Rightarrow TT^1$
 - Given $C: [2^{<\mathcal{M}}] \to k$.
 - Consider the maximal $c_0 < k$ such that $\exists \sigma \forall \tau \supseteq \sigma(C(\tau) \ge c_0)$.
 - σ_0 is a witness for the c_0 .
 - c_0 is dense among extensions of σ_0 .
 - The monochromatic tree is recursive.

Question

- Assume $B\Sigma_2 + \neg I\Sigma_2$ and $C: [2^{<\mathcal{M}}] \to k$.
- Is there an infinite monochromatic tree?
- What is the complexity of an monochromatic tree? Is there a monochromatic tree preserving BΣ₂?

TT1

Theorem (Corduan, Groszek and Mileti)

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$. There is $k \in \mathcal{M}$ with a recursive $C : [2^{<\mathcal{M}}] \rightarrow k$ such that there is no recursive monochromatic tree.

 TT^1

Corollary

- $RCA_0 + B\Sigma_2 \not\vdash TT^1$.
- In that coloring C, every color is nowhere dense.

Theorem (Chong, Li, Wang and Yang)

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$. There is $k \in \mathcal{M}$ with a recursive $C : [2^{<\mathcal{M}}] \rightarrow k$ such that there is no 0'-recursive monochromatic tree.

Corollary

- $WKL_0 + B\Sigma_2 \not\vdash TT^1$.
- In that coloring C, no monochromatic tree is low.

Existence

Theorem (Chong, Li, Wang and Yang) Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$ and $C : [2^{<\mathcal{M}}] \rightarrow k$ is recursive. There is a regular monochromatic tree.

- A set X is regular, if $X \cap \mathcal{M}$ -finite = \mathcal{M} -finite.
- Non-definable solution.

Complexity

Theorem (Chong, Li, Wang and Yang)

Suppose $\mathcal{M} \models B\Sigma_2 + \neg I\Sigma_2$.

- There is k ∈ M with a recursive C : [2^{<M}] → k such that there is no recursive monochromatic tree but there is a low monochromatic tree.
- There is k ∈ M with a recursive C : [2^{<M}] → k such that there is no low monochromatic tree but there is a monochromatic tree preserving BΣ₂.

Conjecture

 $\mathsf{T}\mathsf{T}^1 \not\vdash I\Sigma_2.$

References

- C. T. Chong, Theodore A. Slaman and Yue Yang. The inductive strength of Ramsey's theorem for pairs. To appear.
- Jennifer Chubb, Jeffry L. Hirst, and Timothy H. McNicholl, Reverse mathematics, computability, and partitions of trees, Journal of Symbolic Logic, vol. 74 (2009), no. 1, pp. 201–215.
- Jared Corduan, Marcia J. Groszek and Joseph R. Mileti, Reverse mathematics and Ramsey's property for trees, Journal of Symbolic Logic, vol. 75 (2010), no. 3, pp. 945–954.
- Damir Dzhafarov and Ludovic Patey, Coloring trees in reverse mathematics. To appear.
- Stephen G. Simpson. Subsystems of Second Order Arithmetric. Heidelberg, Springer–Verlag, 1999.

Thank you.