Randomness notions in Muchnik and Medvedev degrees

Kenshi Miyabe @ Meiji University joint work with Rupert Hölzl

CTFM2016 @ Waseda University 20 Sep 2016

Motivation

Main Question

Could we construct a more random set from a given random set?

How to formalize? Why important?

Computable

Logicians ... computable by a Turing machine

Mathematicians ... a formula can be simplified such as 2+3, 2x+1+4x, some integration, etc.

Statisticians and data scientists ... computable with random access

With random access

Which sets are computable with random access?

An old answer: computable sets

Old answer

Theorem (De Leeuwe, Moore, Shannon, Shapiro (1956), Sacks). If A is not computable, then the class

 $\{X \in 2^{\omega} : A \leq_T X\}$

has measure 0.

So, if a set is computable with random access, then the set should be computable. The story is over, in this case. One variant is the case of poly-time computability, which is the famous question of BPP = P?

If there many answers,

Problem: Construct some non-computable set.

Without random access: Impossible.

With random access: Possible.

How difficult is it to compute a set in a given class?

Definition. Let $P, Q \subseteq 2^{\omega}$. We say that P is Muchnik reducible to Q, denoted by $P \leq_w Q$, if, for every $f \in Q$, there exists $g \in P$ such that $g \leq_T f$.

Loosely speaking, any element in Q can compute some element in P.

Definition. Let $P, Q \subseteq 2^{\omega}$. We say that P is Medvedev reducible to Q, denoted by $P \leq_s Q$, if there exists a Turing functional Φ such that $\Phi^f \in P$ for every $f \in Q$.

The difference is uniformity.

	non-uniform	uniform
functional	reverse math	Weihrauch degree
class	Muchnik degree	Medvedev degree

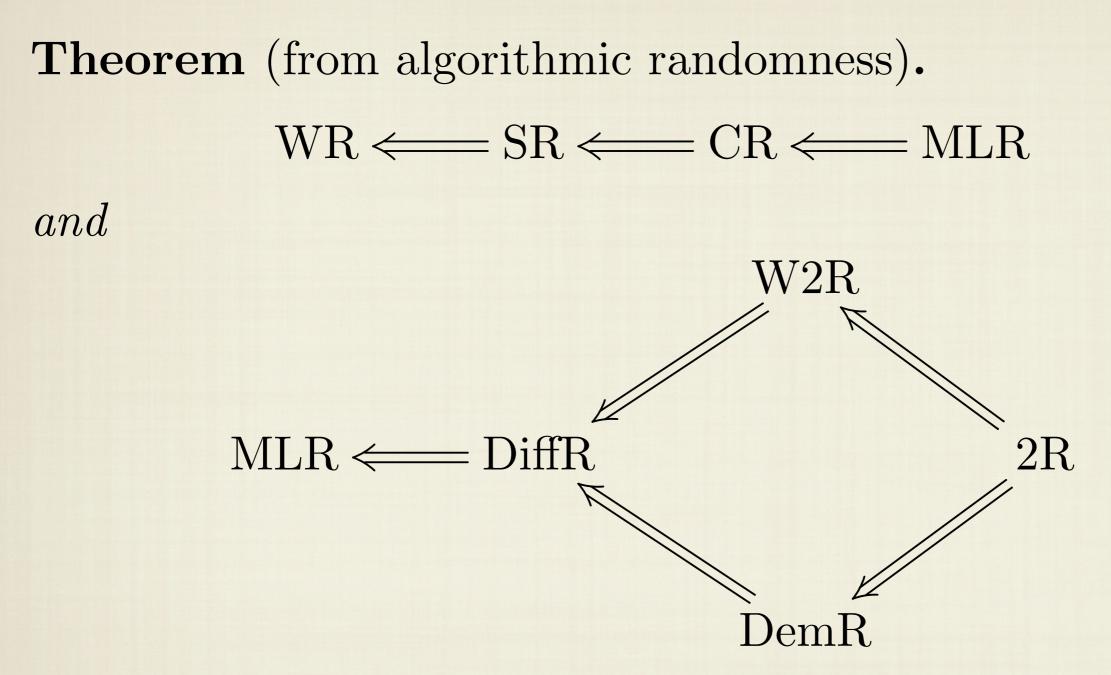
Theorem (Simpson 2004).

 $2^{\omega} <_w MLR <_w PA$

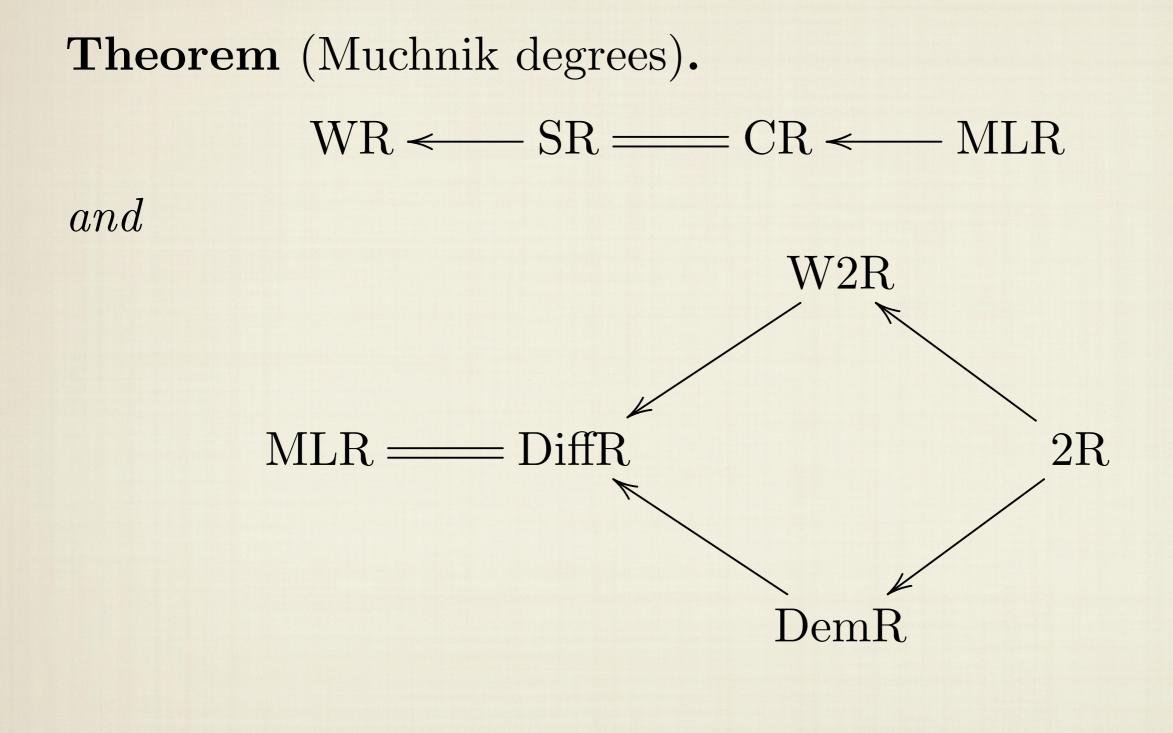
where

- MLR is the class of all ML-random sets,
- PA is the class of consistent complete extensions of *Peano arithmetic.*

The class of random sets seems natural examples in Muchnik degrees.



Every arrow is strict.



- We ask whether each arrow is strict. This can be interpreted as we ask whether we can construct a more random set from a given random set.
- In particular, we look at how uniformity plays a role in this setting.

Proof

$CR <_w MLR$

Proof. Suppose $MLR <_w CR$ for a contradiction.

There exists a high minimal degree **a** by Cooper '73.

Then, there exists a computably random set $X \in \mathbf{a}$, because every high degree contains a computably random set by Nies, Stephan, and Terwijn '05.

By the assumption there exists a ML-random set $Y \leq_T X$. X. Since **a** is minimal and Y can not be computable, we have $Y \equiv_T X$. Thus, the Turing degree of Y is minimal.

However, any ML-random degree can not be minimal by van Lambalgen's theorem. $\hfill \Box$

$SR \equiv_w CR$

Proof. Every Schnorr random set can compute a computably random set, because

- (i) if the Schnorr random set is not high, then it is already ML-random,
- (ii) if the Schnorr random set is high, then it computes a computably random set.

Rather non-uniform proof!

$MLR \equiv_w DiffR$

Proof. Every ML-random set can compute a difference random. Let $X \oplus Y$ be a ML-random set.

- (i) If $X \ge_T \emptyset'$, then Y is 2-random, thus difference random.
- (ii) If $X \not\geq_T \emptyset'$, then X is difference random.

Again, non-uniform proof.

$MLR <_s DiffR$

Theorem.

 $SR <_s CR$

 $X \in 2^{\omega}$ is not computably random if (and only if) $M(X \upharpoonright n) = \infty$ for some computable martingale M.

 $X \in 2^{\omega}$ is not Schnorr random if and only if $M(X \upharpoonright f(n)) > n$ for infinitely many *n* for some computable order *f* and some computable martingale *M*.

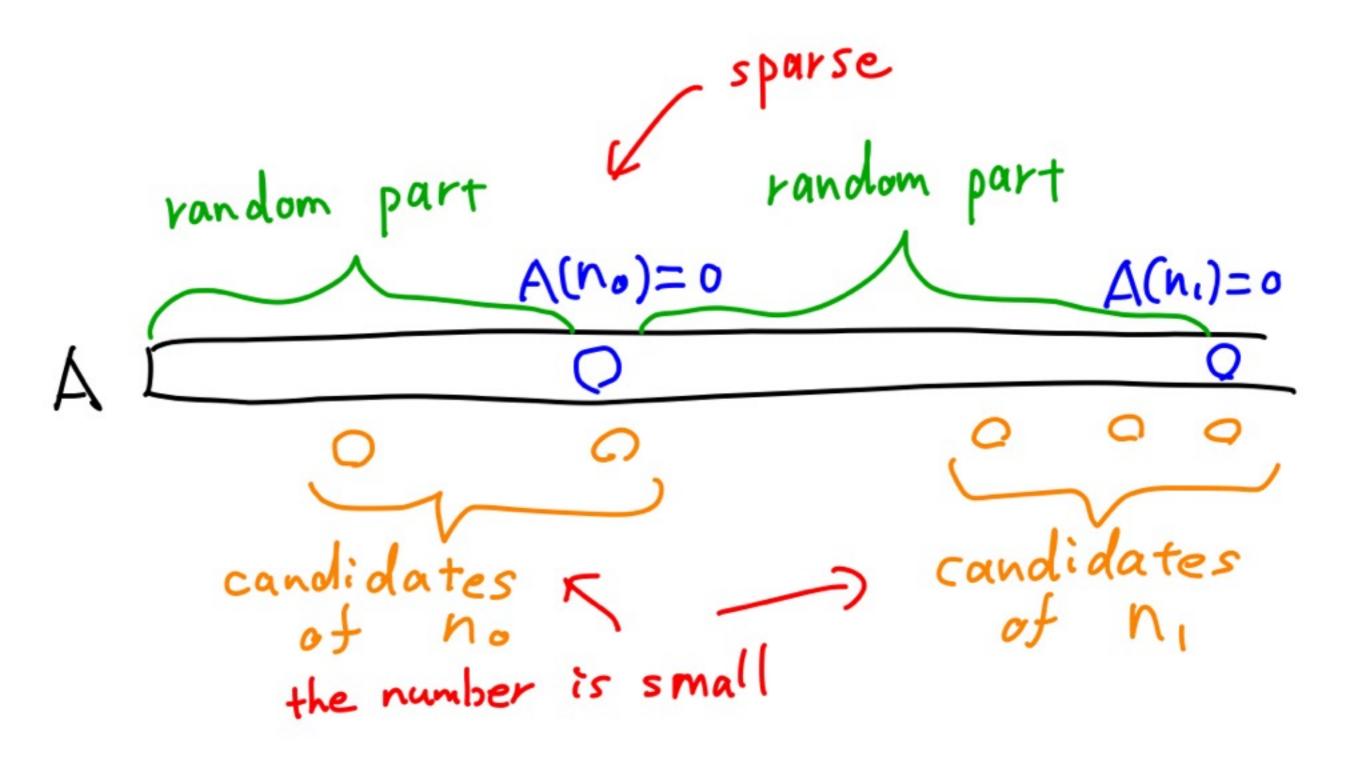
The difference between CR and SR is the rate of divergence. $\operatorname{CR} \not\leq_s \operatorname{SR}$ means that, for every Turing functional Φ , there exists $A \in \operatorname{SR}$ such that $\Phi^A \notin \operatorname{CR}$.

When $\Phi = \text{id}$, it means that there exists $A \in SR$ such that $A \notin CR$.

In fact we extend the method of separating SR and CR.

Construct a random set A

- Forcing A(n_k)=0 in sparse positions
 => too sparse not to be Schnorr random
- Number of candidates of n_k is small
 > so small that some computable martingale
 succeeds (very slowly)

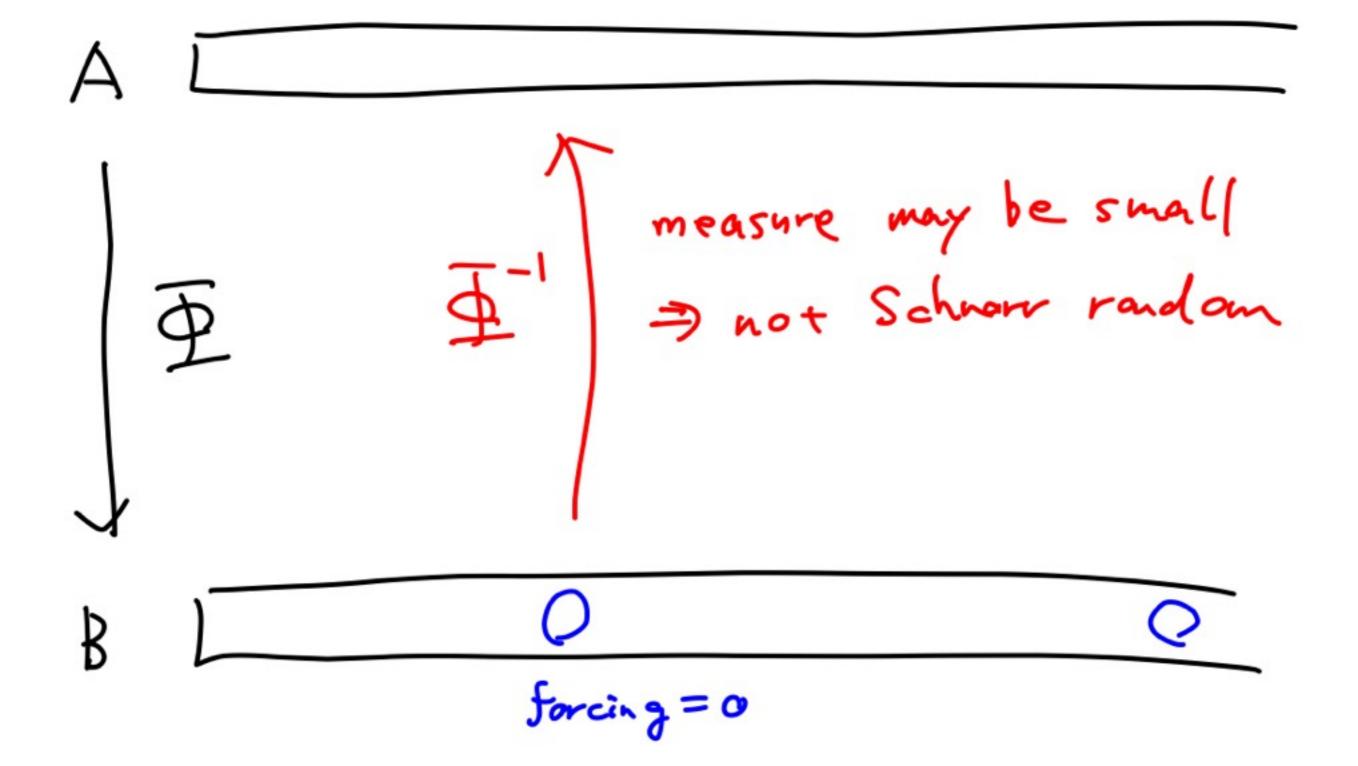


Construct A in SR and B=Phi(A) not in CR

Forcing $B(n_k)=0$ in some positions

Number of candidates of n_k should be small

However, measure of inverse image may be too small (may be empty) and some computable martingale may succeed in Schnorr sense even if n_k is very sparse



- Induced measure is "close to" uniform measure
 => The same method can be applied
- Induced measure is "far from" uniform measure
 The another method will be applied

Let $\Phi :\subseteq 2^{\omega} \to 2^{\omega}$ be a.e. computable function. Then, the induced measure μ is defined by

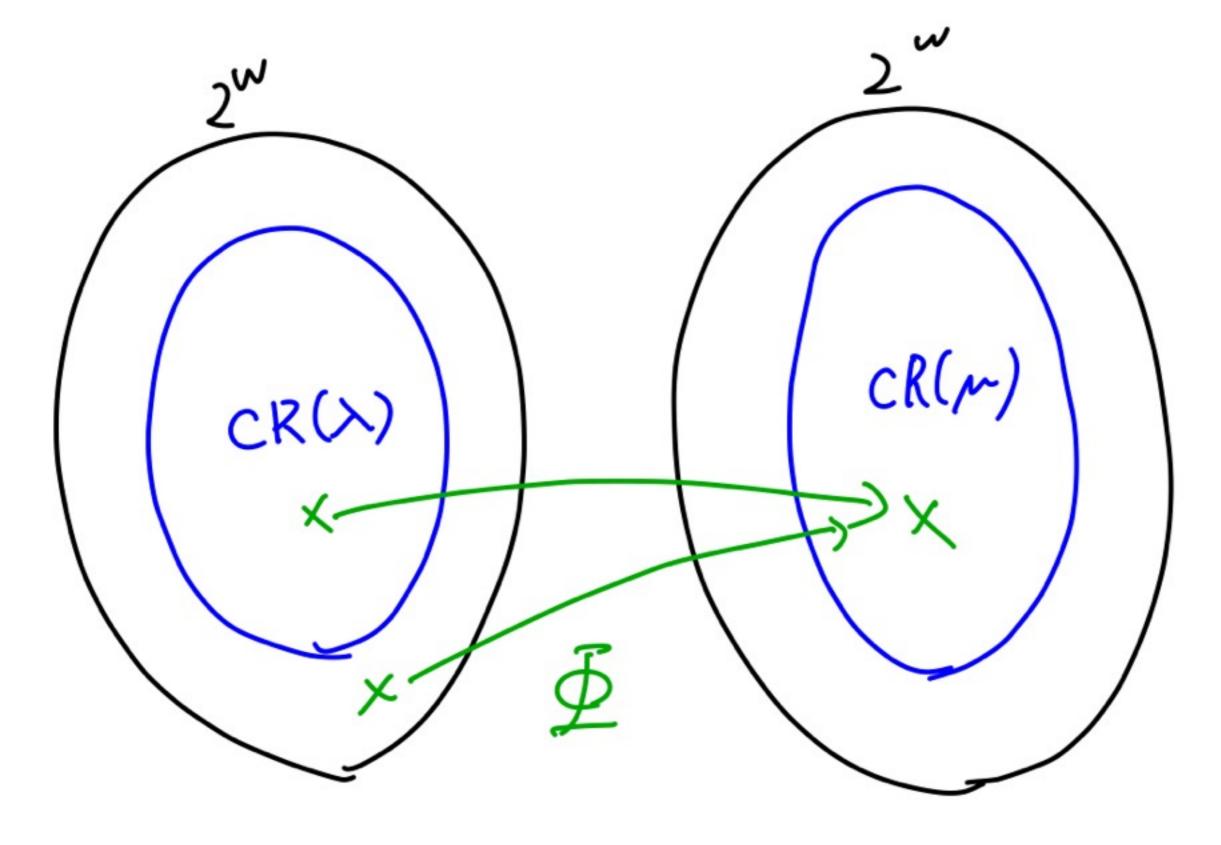
 $\mu(\sigma) = \lambda(\{X \in 2^{\omega} : \Phi(X) \in [\sigma]\}).$

The measure μ is computable. The dividing condition is Case 1 $\operatorname{CR}(\mu) \subseteq \operatorname{CR}(\lambda)$ Case 2 $\operatorname{CR}(\mu) \not\subseteq \operatorname{CR}(\lambda)$ Case 2: $CR(\mu) \not\subseteq CR(\lambda)$

Proof. There exists $Y \in CR(\mu) \setminus CR(\lambda)$.

By the no-randomness-from-nothing result for computable randomness by Rute, there exists $X \in CR(\lambda)$ such that $\Phi(X) = Y$.

Then, $X \in SR$ and $\Phi(X) \notin CR$.

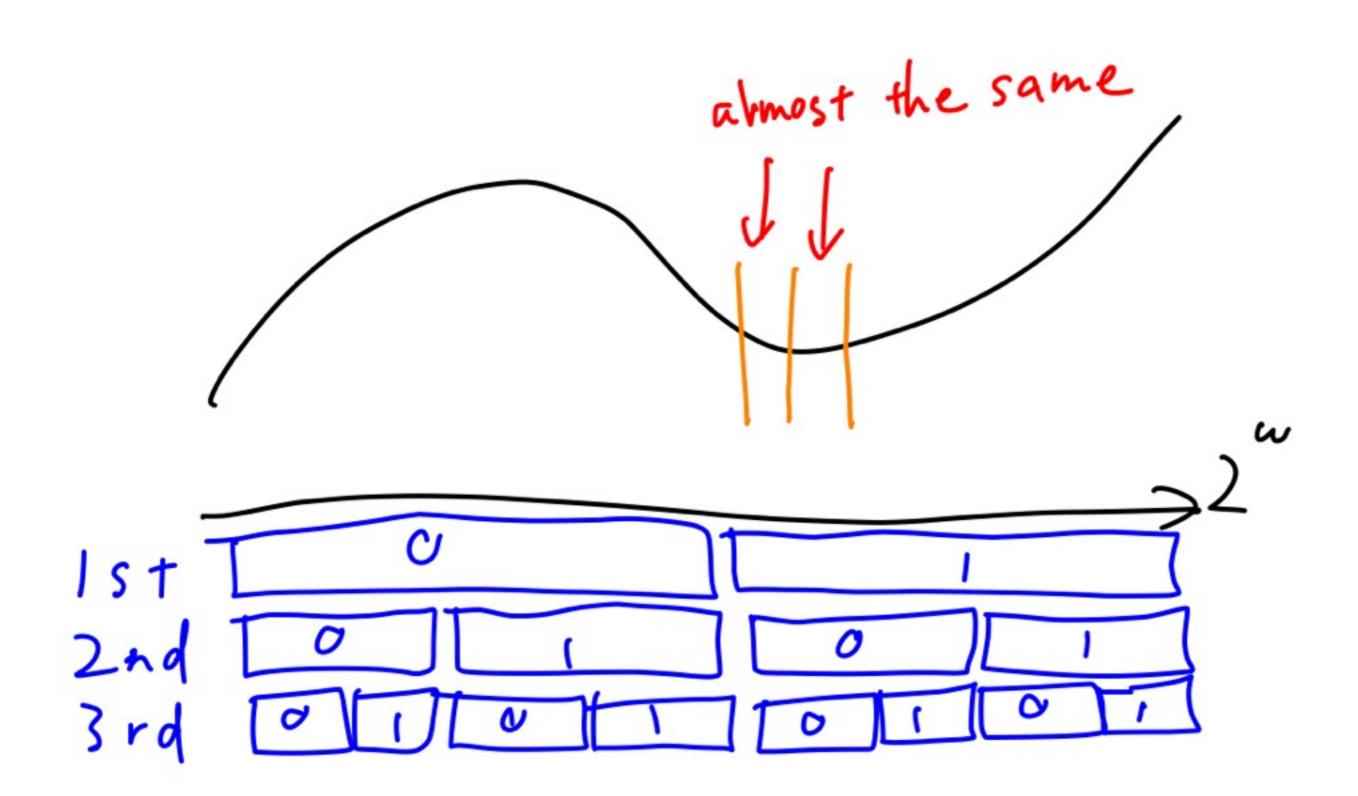


Case 1: $CR(\mu) \subseteq CR(\lambda)$ Lemma. Let μ, ν be computable measures. Then, we have $CR(\mu) \subseteq CR(\nu) \Rightarrow MLR(\mu) \subseteq MLR(\nu) \Rightarrow \nu \ll \mu$. Here, \ll means absolute continuity. Case 1: $CR(\mu) \subseteq CR(\lambda)$

Lemma. Let $\Phi :\subseteq 2^{\omega} \to 2^{\omega}$ be an a.e. computable function. Let μ be the measure induced from Φ and λ . Assume that $\lambda \ll \nu$. Then, for each $\sigma \in 2^{<\omega}$, we have

$$\lim_{n \to \infty} \lambda \{ X \in [\sigma] : \Phi(X)(n) = 0 \} = \frac{1}{2} \lambda(\sigma).$$

Proof. By the Radon-Nikodym theorem and Lévy's zero-one law. \Box



Summary

- We studied randomness notions in Muchnik degrees and Medvedev degrees. They are related to reverse maths and Weihrauch degrees.
- We found two problems that is possible nonuniformly but impossible uniformly.
- Interesting interaction between analysis and computability.