
Linear two-sorted constructive arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Computability Theory and Foundations of Mathematics,
Waseda University, Tokyo, 20. & 21. September 2016

1 / 14

Feasible computation with higher types

Gödel’s T (1958): finitely typed λ-terms with structural recursion.

LT(;) (linear two-sorted λ-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones. LT(;)
generalizes Bellantoni & Cook (1992) to finite types.

LA(;) solves
Heyting Arithmetic

Gödel’s T
=

?

LT(;)

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (quicksort, treesort): they are not linear.

2 / 14

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and – using D
– a function E (n) representing 2n:

D(0) := 0,

D(S(n)) := S(S(D(n))),

E (0) := 1,

E (S(n)) := D(E (n)).

Problem: previous value E (n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

3 / 14

(ii) Double use of higher type values

Define F as the 2n-th iterate of D:

F (0,m) := D(m),

F (S(n),m) := F (n,F (n,m))
or

F (0) := D,

F (S(n)) := F (n) ◦ F (n).

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

4 / 14

(iii) Marked value types

Define I (n, f) as the n-th iterate f n of f . Thus I (n,D)(m) = 2nm.

I (0, f ,m) := m,

I (S(n), f ,m) := f (I (n, f ,m))
or

I (0, f) := id,

I (S(n), f) := f ◦ I (n, f).

Problem: since D : N ↪→ N, I ’s value type is (N ↪→ N)→ N ↪→ N.
Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(I will be admitted is our setting. This is not the case in Cook and
Kapron’s PVω, since PVω is closed under substitution.)

5 / 14

Linear two-sorted terms
Types with input arrow ↪→ and output arrow →:

ρ, σ ::= ι | ρ ↪→ σ | ρ→ σ with ι base type (B, N, ρ× σ, L(ρ)).

ρ is safe if it does not involve the input arrow ↪→.
Input variables x̄ρ and output variables xρ (typed).
Constants are (i) constructors, (ii) recursion operators

RτN : N ↪→ τ → (N ↪→ τ → τ) ↪→ τ

RτL(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ) ↪→ τ
(τ safe),

and (iii) cases operators (τ safe)

CτN : N→ τ → (N ↪→ τ)→ τ,

CτL(ρ) : L(ρ)→ τ → (ρ ↪→ L(ρ) ↪→ τ)→ τ,

Cτρ×σ : ρ× σ → (ρ ↪→ σ ↪→ τ)→ τ.

6 / 14

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms ρ ↪→ σ and ρ→ σ:

x̄ρ | xρ | C ρ (constant) |
(λx̄ρr

σ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρr

σ)ρ→σ | (rρ→σsρ)σ (higher type output vars in r , s distinct,

r does not start with Cτι) |
Cτι t~r (h.t. output vars in FV(t) not in ~r)

with as many ri as there are constructors of ι. s is an input term if

I all its free variables are input variables, or else

I s is of higher type and all its higher type free variables are
input variables.

7 / 14

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

I terminal nodes labelled by a variable or constant,

I abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

I application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

8 / 14

The treesort algorithm

TreeSort(l) = Flatten(MakeTree(l)),

MakeTree([]) = �,
MakeTree(a :: l) = Insert(a,MakeTree(l)),

Insert(a, �) = Ca(�, �),

Insert(a,Cb(u, v)) =

{
Cb(Insert(a, u), v) if a ≤ b

Cb(u, Insert(a, v)) if b < a,

Flatten(�) = [],

Flatten(Cb(u, v)) = Flatten(u) ∗ (b :: Flatten(v)).

Problem: two recursive calls in Flatten, not allowed in LT(;).
Cure: analysis of Flatten in the parse dag computation model.

9 / 14

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let l be a numeral of type L(N). Then #(l ∗ l ′) = O(|l |).

For #Flatten(u) use this size function for numerals u of type T:

|| � || := 0,

||Ca(u, v)|| := 2||u||+ ||v ||+ 3.

Lemma. Let u be a numeral of type T. Then

#Flatten(u) = O(||u||).

10 / 14

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

I RD-free: no recursion constant R, no Flatten.

I simple: no higher type input variables.

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most ||t||, can be computed from t in time O(||t||2).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(||t||2), and ||nf(t)|| ≤ ||t||.

11 / 14

(λx̄r(x̄))s with x̄ of base type

x̄ x̄

r

λx̄

s

7→

s

r

12 / 14

Lemma (RD-elimination)

Let t(~x) be a simple term of safe type. There is a polynomial Pt

such that: if ~r are safe type RD-free closed simple terms and the
free variables of t(~r) are output variables, then in time Pt(||~r ||)
one can compute an RD-free simple term rdf(t;~x ;~r) such that
t(~r)→∗ rdf(t;~x ;~r).

Proof.
By induction on ||t|| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||u||).

Theorem (Normalization)

Let t : N� . . .N� N (with �∈ {↪→,→}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

13 / 14

Conclusion

I LA(;) ∼ LT(;) via Curry-Howard correspondence.

I
Heyting Arithmetic

Gödel’s T
=

LA(;)

LT(;)
=

LA(;) + Flatten

LT(;) + Flatten

I LA(;) + Flatten ` ∀l ,n̄(|l | ≤ n̄→ ∃uS(l , u))

I Computational content of this proof: (LT(;) + Flatten)-term.
Can be extracted by realizability. ∼ treesort algorithm.

14 / 14

