Linear two-sorted constructive arithmetic

Helmut Schwichtenberg

Mathematisches Institut, LMU, Miinchen

Computability Theory and Foundations of Mathematics,

Waseda University, Tokyo, 20. & 21. September 2016

1/14

Feasible computation with higher types

Godel's T (1958): finitely typed A-terms with structural recursion.

LT(;) (linear two-sorted A-terms) restricts T s.t. that the definable
functions are the polynomial time (ptime) computable ones. LT(;)
generalizes Bellantoni & Cook (1992) to finite types.

LA(;) solves
Heyting Arithmetic 7

Godel's T - LT()

Its provably recursive functions are the ptime computable ones.

Problem: how to cover ptime algorithms (not only functions), e.g.
divide-and-conquer ones (quicksort, treesort): they are not linear.

2/14

Sources of exponential complexity. (i) Two recursions

We define a function D doubling a natural number and — using D
— a function E(n) representing 2":

D(0) := 0, E(0) =1,
D(S(n)) :== S(S5(D(n))), E(S(n)) := D(E(n)).

Problem: previous value E(n) taken as recursion argument for D.
Cure: mark argument positions in arrow types as input or output.
Recursion arguments are always input positions.

3/14

(i) Double use of higher type values

Define F as the 2"-th iterate of D:

F(0, m) :== D(m), F(0) :
F(S(n), m) := F(n, F(n, m)) F(S(n)

Problem: in the recursion equation previous value is used twice.
Cure: linearity restriction. No double use of higher type output.

4/14

(iii) Marked value types

Define I(n, f) as the n-th iterate f” of f. Thus I(n, D)(m) =2"m.

1(0,f,m) :=m, 1(0,f) :=id,
1(S(n), f,m):= f(I(n,f,m)) 1(S(n),) :=fol(n,f).
Problem: since D: N < N, /'s value type is (N < N) — N — N.

Cure: only allow “safe” types as value types of a recursion (no
marked argument positions).

(! will be admitted is our setting. This is not the case in Cook and
Kapron's PV“, since PV* is closed under substitution.)

5/14

Linear two-sorted terms

Types with input arrow < and output arrow —:
p,o=1t|p—=ol|p— o with: base type (B, N, p x g, L(p)).

p is safe if it does not involve the input arrow —.
Input variables X” and output variables x” (typed).
Constants are (i) constructors, (ii) recursion operators

RyN=s7T(NsT7o7)7
. (7 safe),
Ripy:Lp) =12 (p=Lp) o7 o7)>7

and (iii) cases operators (7 safe)

Ch:N=>7—=>(N—>71)—>T
C[(p): L(p) > 7= (p = L(p) = 1) =,

Coxgi P X0 = (p—0=T)=>T

6/14

LT(;)-terms built from variables and constants by introduction and
elimination rules for the two type forms p < ¢ and p — o:

xP | xP'| CP (constant) |

(Azer?)P 77 | (rP77sP)? (s an input term) |

(Axer?)P77 | (rP7%sP)? (higher type output vars in r, s distinct,
r does not start with C]) |

C/tr (h.t. output vars in FV(t) not in r)

with as many r; as there are constructors of ¢. s is an input term if
» all its free variables are input variables, or else

> s is of higher type and all its higher type free variables are
input variables.

7/14

The parse dag computation model

Represent terms as directed acyclic graphs (dag), where only nodes
for terms of base type can have in-degree > 1. Nodes can be

> terminal nodes labelled by a variable or constant,

» abstraction nodes with 1 successor, labelled with an (input or
output) variable and a pointer to the successor node, or

» application nodes with 2 successors, labelled with 2 pointers.

A parse dag is a parse tree for a term.

8/14

The treesort algorithm

TreeSort(/) = Flatten(MakeTree(/)),

MakeTree([]) =0,
MakeTree(a :: /) = Insert(a, MakeTree(/)),
)

Insert(a, © = Cy(0,0),
Cp(Insert(a, u),v) ifa<b

Cp(u,Insert(a,v)) if b< a,

Insert(a, Cp(u,v)) = {
Flatten(o) =],
Flatten(Cp(u, v)) = Flatten(u) * (b :: Flatten(v)).

Problem: two recursive calls in Flatten, not allowed in LT(;).
Cure: analysis of Flatten in the parse dag computation model.

9/14

We estimate the number #t of steps it takes to reduce a term t to
its normal form nf(t).

Lemma. Let / be a numeral of type L(N). Then #(/ /") = O(|/|).

For #Flatten(u) use this size function for numerals u of type T:

[o]:=0,
| Ca(u,)| = 2ful + [v] + 3.

Lemma. Let v be a numeral of type T. Then

#Flatten(u) = O(|ul).

10/ 14

Goal: all functions definable in LT(;) + Flatten are polytime
computable. Call a term

» RD-free: no recursion constant R, no Flatten.

» simple: no higher type input variables.

Lemma (Sharing normalization)

Let t be an RD-free simple term. Then a parse dag for nf(t), of
size at most |t|, can be computed from t in time O(|t|?).

Corollary (Base normalization)

Let t be a closed RD-free simple term of type N or L(N). Then
nf(t) can be computed from t in time O(|t|?), and |nf(t)] < |t|.

11/14

(Axr(X))s with X of base type

12 /14

Lemma (RD-elimination)

Let t(X) be a simple term of safe type. There is a polynomial Py
such that: if ¥ are safe type RD-free closed simple terms and the
free variables of t(r') are output variables, then in time P(|7)
one can compute an RD-free simple term rdf(t; X; ') such that
t(r) =" rdf(t; X, 7).

Proof.

By induction on |t| (cf. Chapter 8 of H.S. & S.Wainer, Proofs and
Computations, 2012). Need an additional case for Flatten, and
#Flatten(u) = O(||ul). O

Theorem (Normalization)

Lett: N — ...N — N (with € {—,—}) be a closed term in
LT(;) + Flatten. Then t denotes a polytime function.

13 /14

Conclusion

» LA(;) ~ LT(;) via Curry-Howard correspondence.

Heyting Arithmetic ~ LA(;) LA(;) + Flatten
Godel's T ~ LT(;) LT()+ Flatten
LA(;) + Flatten =V, 5(|/| < n — 3,5(/, u))

Computational content of this proof: (LT(;) + Flatten)-term.
Can be extracted by realizability. ~ treesort algorithm.

v

v

14 /14

