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Strategies for Σ0
3-games: an outline

• The determinacy of this class of games was proven by Morton Davis1 and
this is a proof in analysis.

For, recursively open, that is Σ0
1, games the answer to the question “Where

do the strategies lie?” are well known: they occur definably over Lωck
1

in the
constructible hierarchy. Answers are known for Σ0

2 as well.

• But where are the strategies Σ0
3-games?

One can show that the strength of Det(Σ0
3) lies strictly between Π1

3-CA0 and
Π1

2-CA0, and indeed we can pin down an exact level, Lβ0 for this.2

• However today we focus on new work relating this exact level to notions
generalising Kleene’s generalised recursion theory of finite types, using
Infinite Time Turing machines, rather than regular TM’s.

1M. Davis “Infinite Games of Perfect Information”, Ann. Math. Studies, 1964
2P.D. Welch “Weak systems of analysis, determinacy and arithmetical quasi-inductive

definitions”, JSL, 2011



Kleene’s Recursion in finite types

• n ∈ N are type 0; x : N → N are type 1; F : NN → N are type 2 . . ..

• Kleene:3 gave a theory of recursion in finite type objects based on the
Gödel-Herbrand type approach of an equational calculus.

• Ordinary recursion: usual notion: {e}(m, x)↓

• A useful Type-2 functional: oJ - the ordinary Turing jump functional:

oJ(e,m, x) =

{
1 if {e}(m, x)↓
0 otherwise.

31959 & 1963, Trans. of Amer. Math. Soc.



• This gives rise to a class of functions recursive in I for some type-2
functional I: in {e}I an extra operation is allowed: consulting I.
There is the notion of one functional I1 being recursive in another I2.

• However now a recursion-in-I is best represented by a well-founded but
possibly infinitely branching tree.

.
Theorem (Kleene)
..

.

(i) The oJ-recursive sets of integers, i.e. those sets R for which

R(n) ↔ {e}oJ(n)↓ 1 ∧ ¬R(n) ↔ {e}oJ(n)↓ 0

for some index e, are precisely the hyperarithmetic ones.

(ii)
HoJ(e) ↔ {e}oJ(e)↓

is a complete semi-recursive (in oJ) set of integers, and is a complete Π1
1 set

of integers: HoJ ≡1 O.



• In two further papers4 he gave an equivalence to the equational calculus
version of generalised recursion to one using a Turing machine model .

41962: Proc. Lond. Math. Soc. & Proc. of CLMPS, Stanford)



⅁Σ0
n sets

.
Definition
...

For a universal Σ0
n set U ⊆ N× NN then the set ⅁U which so arises is then a

complete ⅁Σ0
n set, and it essentially lists those Σ0

n games that player I wins.
.
Definition
..
.Let GΣ0

1 denote the complete ⅁Σ0
n set.



We have the following theorem which will connect this with determinacy of
open games:
.
Theorem (Moschovakis, Svenonius )
..
.The complete ⅁Σ0

1 set of integers, GΣ0
1 , is a complete Π1

1 set of integers.

Further:
.
Theorem (Spector)
..
.The ordinal of monotone Π1

1 (and so ⅁Σ0
1) inductive definitions is ωck

1 .



Moreover:
.
Theorem (Blass)
..

.
Any Σ0

1-game for which the open player, that is I, has a winning strategy, has
a HYP winning strategy. (Or in the above terms, an oJ-recursive strategy.)

.
Theorem (Summary)
..

.
GΣ0

1 ≡1 HoJ ≡1 O ≡1 T1
ωck

1
- the latter the Σ1-Theory of (Lωck

1
,∈).

We seek to raise all these ideas to the level of Σ0
3.



• We first consider Kleene recursion in type 2 objects, but replacing Turing
jump by the notion of eventual jump eJ derived from Hamkins’ and Kidder’s
notion of an infinite time Turing machine) (ITTM).

• Lubarsky5 already defined a related notion of freezing-ittm-computations
which uses instead oracles for properly halting ittms arranged in
well-founded trees. This kind of computation can also be formulated as a
notion as here of recursion in a suitably defined halting jump, hJ.

5R. Lubarsky, “Well founded iterations of Infinite Time Turing Machines”, Ways of Proof
Theory, Ed. R-D. Schindler, Ontos, 2010.



Part I: ITTM description6

• Allow a standard Turing machine to run transfinitely using one of the usual
programs ⟨Pe | e ∈ N⟩.
• Alphabet: {0, 1};
• Enumerate the cells of the tape ⟨Ck | k ∈ N⟩.

Let the current instruction about to be performed at time τ be Ii(τ);
Let the current cell being inspected be Cp(τ).

• Behaviour at successor stages α → α+ 1: as normal.
At limit times λ: (a) we specify by fiat cell values by:

Ck(λ) = Liminfβ→λCk(α)

(where the value in Ck at time τ is Ck(τ)).
(b) we also (i) put the Read/Write head to cell Cp(λ) where

p(λ) = Liminf ∗α 7→λ{p(β) | α < β < λ};

(ii) set
i(λ) = Liminfα 7→λ{i(β) | α < β < λ}.

6Hamkins & Lewis “Infinite Time Turing Machines”, JSL, vol. 65, 2000.



• Hamkins & Lewis proved there is a universal machine, an Sm
n -Theorem,

and a Recursion Theorem for ITTM’s, and a wealth of results on the
resulting ITTM-degree theory.
.
Definition (eventual, or settled output)
..

.
Pe(x)↓ iff
There is a time β so that Pe(x) has a fixed output tape for all later times α.

• We may define eventual convergence sets:

H = {(e, x) | e ∈ N, x ∈ 2N ∧ Pe(x)↓}

H0 = {e | e ∈ N ∧ Pe(0)↓}

Q. What is H or H0? (They are complete ittm-semi-decidable sets.)
How do we characterise them?

Q. How long do we have to wait to discover if e ∈ H0 or not?



• Let s(α, e, x) be the snapshot of the state of Pe(x) at time α.
• There is a cub set D(e, x) ⊆ ω1 s.t. s(e, x, α) = s(e, x, β).



The λ, ζ,Σ-Theorem7

.
Theorem
..

.

Let ζ be the least ordinal so that there exists Σ > ζ with the property that

Lζ ≺Σ2 LΣ ; (ζ is “Σ2-extendible”.)

(i) The universal ittm on integer input first enters a loop at time ζ.
(ii) Then ζ = sup{α | ∃e Pe(0)↓ in α steps}

By the Σ2 nature of the ittm’s, this means for any e, n,

s(ζ, e, n) = s(Σ, e, x).

• As a corollary one derives a Normal Form Theorem and:
.
Corollary
..

. H0 ≡1 Σ2-Th(Lζ).

7Welch The length of ITTM computations, Bull. London Math. Soc. 2000



Σn-nested ordinals

We say β admits a Σ2-nesting if
(i) Lβ is the well founded part of some model M of KP in which:
(ii) there are

γ0 ≤ · · · γn ≤ · · · β · · · < cn < · · · < c0

with
(Lγi ≺Σ2 Lci)

M.

Let β0 be least that admits a Σ2-nesting.
.
Theorem
..

.

Let δ be the least ordinal so that strategies for Σ0
3 games are definable over

Lδ . Then:
δ = β0.

We’d like a better characterisation of this ordinal than via nestings.



Functions generalised recursive in eJ

We generalise Kleene to a notion of type-2 recursion involving ittm’s rather
than ordinary tm’s at nodes on a well founded tree. Our intention is that such
machines may also make oracle calls concerning the eventual behaviour of
other machines. We call this ittm-generalised-recursion (-in-eJ).

eJ = {⟨⟨f ,m, x⟩, i⟩ : (i = 1 and PeJ
f (m, x) has fixed output) or

(i = 0 and PeJ
f (m, x) does not have fixed output ) }

.
Definition (The {e}’th function generalised recursive in eJ)
..

.

(i) {e}eJ(m, x)↓ iff ⟨e,m, x⟩ ∈ dom(eJ)
({e}eJ(m, x) is defined or convergent) ;

and {e}eJ(m, x) = eJ(e,m, x).
(ii) Otherwise it is undefined or divergent ( {e}eJ(m, x)↑).



Recall our summary concerning generalised recursion in oJ:
.
Theorem (Summary - Kleene Recursion in oJ)
..

.
GΣ0

1 ≡1 HoJ ≡1 O ≡1 T1
ωck

1
- the latter the Σ1-Theory of (Lωck

1
,∈).

Let HeJ = {e | {e}eJ(e)↓} be the complete eJ-semi-recursive set.

.
Theorem (Summary -generalised Kleene Recursion in eJ)
..

. GΣ0
3 ≡1 HeJ ≡1 T1

β0
- the latter the Σ1-Theory of (Lβ0 ,∈).



Generalising Blass

Recall:
.
Theorem (Blass)
..

.

Any Σ0
1-game for which the open player, that is I, has a winning strategy, has

a winning strategy in Lωck
1

. (Or in the above terms, an oJ-recursive strategy.)

We have:
.
Theorem
..

.

Any Σ0
3-game for which the open player, that is I, has a winning strategy, has

a winning strategy in Lγ . (Or in the above terms, an eJ-recursive strategy.)



The length of monotone-⅁Σ0
3-inductive operators

.
Theorem
..

.

If γ < β0 is least with Lγ ≺Σ1 Lβ0 then γ is the closure ordinal of
monotone-⅁Σ0

3-Inductive Operators.

More recently Hachtman has announced:
.
Theorem (Hachtman)
..
.Lβ0 is the least β-model of Π1

2-MI.

So this gives yet another characterisation of β0.


