Σ_3^0 -determinacy and higher type recursion *P.D.Welch, CTFM-2017, Waseda*

Strategies for Σ_3^0 -games: an outline

• The determinacy of this class of games was proven by Morton Davis¹ and this is a proof in *analysis*.

For, recursively open, that is Σ_1^0 , games the answer to the question "Where do the strategies lie?" are well known: they occur definably over $L_{\omega_1^{ck}}$ in the constructible hierarchy. Answers are known for Σ_2^0 as well.

• But where are the strategies Σ_3^0 -games?

One can show that the strength of $Det(\Sigma_3^0)$ lies strictly between Π_3^1 -CA₀ and Π_2^1 -CA₀, and indeed we can pin down an exact level, L_{β_0} for this.²

• However today we focus on new work relating this exact level to notions generalising Kleene's generalised recursion theory of finite types, using Infinite Time Turing machines, rather than regular TM's.

¹M. Davis "Infinite Games of Perfect Information", Ann. Math. Studies, 1964 ²P.D. Welch "Weak systems of analysis, determinacy and arithmetical quasi-inductive definitions", JSL, 2011

Kleene's Recursion in finite types

• $n \in \mathbb{N}$ are type 0; $x : \mathbb{N} \to \mathbb{N}$ are type 1; $\mathsf{F} : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ are type 2

• Kleene:³ gave a theory of *recursion in finite type objects* based on the Gödel-Herbrand type approach of an *equational calculus*.

- Ordinary recursion: usual notion: $\{e\}(m, x)\downarrow$
- A useful Type-2 functional: oJ the *ordinary Turing jump functional*:

$$\mathsf{oJ}(e, \boldsymbol{m}, \boldsymbol{x}) = \begin{cases} 1 & \text{if } \{e\}(\boldsymbol{m}, \boldsymbol{x}) \downarrow \\ 0 & \text{otherwise.} \end{cases}$$

³1959 & 1963, Trans. of Amer. Math. Soc.

• This gives rise to a class of functions *recursive in* I for some type-2 functional I: in $\{e\}^{I}$ an extra operation is allowed: consulting I. There is the notion of one functional I_{1} being recursive in another I_{2} .

• However now a recursion-in-l is best represented by a *well-founded but possibly infinitely branching tree*.

Theorem (Kleene)

(i) The oJ-recursive sets of integers, i.e. those sets R for which

$$R(n) \leftrightarrow \{e\}^{\mathsf{oJ}}(n) \downarrow 1 \land \neg R(n) \leftrightarrow \{e\}^{\mathsf{oJ}}(n) \downarrow 0$$

for some index e, are precisely the hyperarithmetic ones.

(ii)

$$H^{\mathsf{oJ}}(e) \leftrightarrow \{e\}^{\mathsf{oJ}}(e) \downarrow$$

is a complete semi-recursive (in oJ) set of integers, and is a complete Π_1^1 set of integers: $H^{oJ} \equiv_1 \mathcal{O}$.

• In two further papers⁴ he gave an equivalence to the *equational calculus* version of generalised recursion to one using a Turing machine model.

⁴1962: Proc. Lond. Math. Soc. & Proc. of CLMPS, Stanford)

$\partial \Sigma_n^0$ sets

Definition

For a universal Σ_n^0 set $U \subseteq \mathbb{N} \times \mathbb{N} \mathbb{N}$ then the set ∂U which so arises is then a *complete* $\partial \Sigma_n^0$ *set*, and it essentially lists those Σ_n^0 games that player *I* wins.

Definition

Let $\mathbf{G}^{\Sigma_1^0}$ denote the complete $\Im \Sigma_n^0$ set.

We have the following theorem which will connect this with determinacy of open games:

Theorem (Moschovakis, Svenonius)

The complete $\partial \Sigma_1^0$ set of integers, $\mathbf{G}^{\Sigma_1^0}$, is a complete Π_1^1 set of integers.

Further:

Theorem (Spector)

The ordinal of monotone Π^1_1 (and so $\partial \Sigma^0_1$) inductive definitions is ω_1^{ck} .

Moreover:

Theorem (Blass)

Any Σ_1^0 -game for which the open player, that is I, has a winning strategy, has a HYP winning strategy. (Or in the above terms, an oJ-recursive strategy.)

Theorem (Summary)

$$\mathsf{G}_{\Sigma_1}^{\Sigma_1} \equiv_1 H^{\mathsf{oJ}} \equiv_1 \mathcal{O} \equiv_1 T_{\omega_1^{ck}}^1$$
 - the latter the Σ_1 -Theory of $(L_{\omega_1^{ck}}, \in)$

We seek to raise all these ideas to the level of Σ_3^0 .

• We first consider Kleene recursion in type 2 objects, but replacing Turing jump by the notion of *eventual jump* eJ derived from Hamkins' and Kidder's notion of an *infinite time Turing machine*) (*ITTM*).

• Lubarsky⁵ already defined a related notion of *freezing-ittm-computations* which uses instead oracles for properly halting ittms arranged in well-founded trees. This kind of computation can also be formulated as a notion as here of recursion in a suitably defined *halting jump*, hJ.

⁵R. Lubarsky, "Well founded iterations of Infinite Time Turing Machines", Ways of Proof Theory, Ed. R-D. Schindler, Ontos, 2010.

Part I: ITTM description⁶

- Allow a standard Turing machine to run transfinitely using one of the usual programs $\langle P_e \mid e \in \mathbb{N} \rangle$.
- Alphabet: {0,1};
- Enumerate the cells of the tape $\langle C_k \mid k \in \mathbb{N} \rangle$.

Let the current instruction about to be performed at time τ be $I_{i(\tau)}$; Let the current cell being inspected be $C_{p(\tau)}$.

• Behaviour at successor stages $\alpha \rightarrow \alpha + 1$: as normal. At limit times λ : (a) we specify by *fiat* cell values by:

$$C_k(\lambda) = Liminf_{\beta \to \lambda}C_k(\alpha)$$

(where the value in C_k at time τ is $C_k(\tau)$). (b) we also (i) put the Read/Write head to cell $C_{p(\lambda)}$ where

$$p(\lambda) = Liminf^*_{\alpha \mapsto \lambda} \{ p(\beta) \mid \alpha < \beta < \lambda \};$$

(ii) set

$$i(\lambda) = Liminf_{\alpha \mapsto \lambda} \{ i(\beta) \mid \alpha < \beta < \lambda \}.$$

⁶Hamkins & Lewis "Infinite Time Turing Machines", JSL, vol. 65, 2000.

• Hamkins & Lewis proved there is a *universal machine*, an S_n^m -Theorem, and a *Recursion Theorem* for ITTM's, and a wealth of results on the resulting ITTM-*degree theory*.

Definition (eventual, or settled output) $P_e(x)\downarrow$ iff There is a time β so that $P_e(x)$ has a fixed output tape for all later times α .

• We may define *eventual convergence* sets:

$$H = \{(e, x) \mid e \in \mathbb{N}, x \in 2^{\mathbb{N}} \land P_e(x) \downarrow\}$$
$$H_0 = \{e \mid e \in \mathbb{N} \land P_e(0) \downarrow\}$$

- Q. What is H or H_0 ? (They are complete *ittm*-semi-decidable sets.) How do we characterise them?
- Q. How long do we have to wait to discover if $e \in H_0$ or not?

- Let $s(\alpha, e, x)$ be the snapshot of the state of $P_e(x)$ at time α .
- There is a cub set $D(e, x) \subseteq \omega_1$ s.t. $s(e, x, \alpha) = s(e, x, \beta)$.

The λ, ζ, Σ -Theorem⁷

Theorem

Let ζ be the least ordinal so that there exists $\Sigma > \zeta$ with the property that

 $L_{\zeta} \prec_{\Sigma_2} L_{\Sigma};$ (ζ is " Σ_2 -extendible".)

(i) The universal ittm on integer input first enters a loop at time ζ.
(ii) Then ζ = sup{α | ∃e P_e(0)↓in α steps}

By the Σ_2 nature of the ittm's, this means for any e, n,

$$s(\zeta, e, n) = s(\Sigma, e, x).$$

• As a corollary one derives a Normal Form Theorem and:

Corollary

$$H_0 \equiv_1 \Sigma_2 \text{-} Th(L_\zeta).$$

⁷Welch *The length of ITTM computations*, Bull. London Math. Soc. 2000

Σ_n -nested ordinals

We say β admits a Σ_2 -nesting if (i) L_β is the well founded part of some model *M* of *KP* in which: (ii) there are

$$\gamma_0 \leq \cdots \gamma_n \leq \cdots \quad \beta \quad \cdots < c_n < \cdots < c_0$$

with

$$(L_{\gamma_i}\prec_{\Sigma_2} L_{c_i})^{\mathcal{M}}.$$

Let β_0 be least that admits a Σ_2 -nesting.

Theorem

Let δ be the least ordinal so that strategies for Σ_3^0 games are definable over L_{δ} . Then:

$$\delta = \beta_0.$$

We'd like a better characterisation of this ordinal than via nestings.

Functions generalised recursive in eJ

We generalise Kleene to a notion of type-2 recursion involving *ittm*'s rather than ordinary *tm*'s at nodes on a well founded tree. Our intention is that such machines may also make oracle calls concerning the eventual behaviour of other machines. We call this *ittm-generalised-recursion* (-in-eJ).

$$eJ = \{ \langle \langle f, \boldsymbol{m}, \boldsymbol{x} \rangle, i \rangle : (i = 1 \text{ and } P_f^{eJ}(\boldsymbol{m}, \boldsymbol{x}) \text{ has fixed output) or} \\ (i = 0 \text{ and } P_f^{eJ}(\boldsymbol{m}, \boldsymbol{x}) \text{ does not have fixed output }) \}$$

Definition (The {e}'th function generalised recursive in eJ)
(i) {e}^{eJ}(m,x)↓ iff ⟨e, m, x⟩ ∈ dom(eJ) ({e}^{eJ}(m,x) is defined or convergent); and {e}^{eJ}(m,x) = eJ(e, m, x).
(ii) Otherwise it is undefined or divergent ({e}^{eJ}(m,x)↑). Recall our summary concerning generalised recursion in oJ:

Theorem (Summary - Kleene Recursion in oJ) $G^{\Sigma_1^0} \equiv_1 H^{oJ} \equiv_1 \mathcal{O} \equiv_1 T^1_{\omega_1^{ck}}$ - the latter the Σ_1 -Theory of $(L_{\omega_1^{ck}}, \in)$.

Let $H^{eJ} = \{e \mid \{e\}^{eJ}(e) \downarrow\}$ be the complete eJ-semi-recursive set.

Theorem (Summary -generalised Kleene Recursion in eJ) $\mathbf{G}^{\Sigma_3^0} \equiv_1 H^{\mathsf{eJ}} \equiv_1 T^1_{\beta_0}$ - the latter the Σ_1 -Theory of (L_{β_0}, \in) .

Generalising Blass

Recall:

Theorem (Blass)

Any Σ_1^0 -game for which the open player, that is I, has a winning strategy, has a winning strategy in $L_{\omega_1^{ck}}$. (Or in the above terms, an oJ-recursive strategy.)

We have:

Theorem

Any Σ_3^0 -game for which the open player, that is I, has a winning strategy, has a winning strategy in L_{γ} . (Or in the above terms, an eJ-recursive strategy.)

The length of monotone- $\partial \Sigma_3^0$ -inductive operators

Theorem

If $\gamma < \beta_0$ is least with $L_{\gamma} \prec_{\Sigma_1} L_{\beta_0}$ then γ is the closure ordinal of monotone- $\Im \Sigma_3^0$ -Inductive Operators.

More recently Hachtman has announced:

Theorem (Hachtman)

 L_{β_0} is the least β -model of Π_2^1 -MI.

So this gives yet another characterisation of β_0 .