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Reductions which are stronger

I Turing reduction

I m-reduction

I truth-table reduction

I weak-truth-table reduction, i.e. bT-reduction

Degrees:

I Turing degrees, wtt-degrees, tt-degrees, m-degrees

I Computably enumerable r -degrees, ∆0
2 r -egrees, all r -degrees

I Structural and Model-Theoretical properties
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Computably Enumerable Turing-degrees

I Sacks splitting theorem

I Sacks density theorem

I Shoenfield conjecture
I Lachlan-Yates minimal pair theorem: an instance of construction

- There are nonrecursive c.e. sets such that

If C is Turing reducible to both A and B, then C is recursive.

Requirements:

Re : ΦA
e = ΦB

e = f total ⇒ f recursive.

I Lattice embeddings/nonembeddings

I Lachlan’s nonsplitting theorem and monster constructions



Computably Enumerable wtt-degrees

wtt-reduction was first proposed by Friedberg and Rogers, around 1956.

I Reconsider the requirement

Re : ΦA
e = ΦB

e = f total ⇒ f recursive.

I Ladner and Sasso - Splitting+Density is true for the c.e. wtt-degrees.

I Each c.e. Turing degree either contains one or infinitely many c.e.
wtt-degrees.

I Each nonzero c.e. wtt-degree contains a simple set.



Turing Jump and High/Low Hierarchy

I K = {e : ϕe(e) ↓}, the Halting problem

I KA = {e : ΦA
e (e) ↓}, relativised Halting problem

I KA, is called the Turing Jump of A, denoted as A′.

I ′ is increasing, and has range ≥ 0′.

Jump Inversion Theorems:

Friedberg, Shoenfield, Sacks

I Low degrees and High degrees, High/Low hierarchy

I Sacks: There exist intermediate c.e. degrees, i.e. not lown, not highn for
any n.
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Superlow sets and wtt-noncuppable

I A set A is superlow, if A′ ≤tt ∅′.

I A set B is superhigh, if ∅′′ ≤tt H ′.

I There are superlow c.e. sets A and B such that ∅′ ≤T A⊕ B. (Bickford
and Mills, 1982)

I We cannot strength “Turing reduction” above as “wtt-reduction”, as
Bickford and Mills also proved

I If A is superlow and ∅′ is wtt-reducible to A⊕W , then ∅′ is wtt-reducible
to W .

I This shows the existence of c.e. sets, low, but not superlow.
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Bounded Jump Operator - a definition of Anderson and Csima

For A ⊆ N, define

A† = {x : ∃i < x [ϕi (n) ↓ & ΦA�ϕi (x)
x (x) ↓]}.

Obviously, A† ≤T A⊕ ∅′, so if A ≥T ∅′, then A† ≡T A.

We can also have:

I ∅† ≡1 ∅′. So, for set A, A ≤wtt ∅† if and only if A is ω-c.e.

I A ≤1 A† and

I A† 6≤wtt A.

I A† ≤1 A′.

I For some set A, A† 6≤wtt A⊕ ∅′.
As indicated above, A† ≤T A⊕ ∅′ is always true.

I For sets A, B with A ≤wtt B, A† ≤1 B†.
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An analogue of Shoenfield’s Jump Inversion

Theorem (Anderson and Csima):

For a set C with ∅† ≤wtt C ≤wtt ∅††, there is a set B ≤wtt ∅† such that
C ≡wtt B†.

How about the analogue of Sacks inversion?

Still open.
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Bounded-low set

A set A is bounded-low if A† ≤wtt ∅†, i.e. if A† is ω-c.e..

1. All superlow sets are bounded low.

2. There is a high bounded-low set. (Anderson, Csima and Lange)

3. There is a superhigh bounded-low set. (Wu and Wu))

4. There is a low, but not superlow, bounded-low set. (Wu and Wu)

5. This provides answers to two questions of Anderson, Csima and Lange in
their recent paper.



Thanks!


