When a strong reduction is considered

Wu Guohua

Nanyang Technological University

CTFM 2016

20-21 September, 2016



Reductions which are stronger

v

Turing reduction

» m-reduction

v

truth-table reduction

v

weak-truth-table reduction, i.e. bT-reduction



Reductions which are stronger

v

Turing reduction

» m-reduction

v

truth-table reduction

v

weak-truth-table reduction, i.e. bT-reduction

Degrees:

» Turing degrees, wtt-degrees, tt-degrees, m-degrees
» Computably enumerable r-degrees, AS r-egrees, all r-degrees

> Structural and Model-Theoretical properties



Computably Enumerable Turing-degrees

» Sacks splitting theorem

> Sacks density theorem

> Shoenfield conjecture
> Lachlan-Yates minimal pair theorem: an instance of construction
- There are nonrecursive c.e. sets such that

If C is Turing reducible to both A and B, then C is recursive.

Requirements:
Re: CD? = cbf = f total = f recursive.
> Lattice embeddings/nonembeddings

> Lachlan’s nonsplitting theorem and monster constructions



Computably Enumerable wtt-degrees

wtt-reduction was first proposed by Friedberg and Rogers, around 1956.

> Reconsider the requirement

Re: d)? = <Df = f total = f recursive.

> Ladner and Sasso - Splitting+Density is true for the c.e. wtt-degrees.

> Each c.e. Turing degree either contains one or infinitely many c.e.
wtt-degrees.

> Each nonzero c.e. wtt-degree contains a simple set.
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Turing Jump and High/Low Hierarchy
» K ={e: pe(e) |}, the Halting problem
» KA ={e: dd(e) |}, relativised Halting problem
» K*, is called the Turing Jump of A, denoted as A’.

» ' is increasing, and has range > 0.

Jump Inversion Theorems:

Friedberg, Shoenfield, Sacks

» Low degrees and High degrees, High/Low hierarchy

> Sacks: There exist intermediate c.e. degrees, i.e. not low,, not high, for
any n.
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A set B is superhigh, if 0" <. H'.
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There are superlow c.e. sets A and B such that i/ < A® B.  (Bickford
and Mills, 1982)

> We cannot strength “Turing reduction” above as “wtt-reduction”, as
Bickford and Mills also proved

> If Ais superlow and ()’ is wtt-reducible to A@® W, then @’ is wtt-reducible
to W.

v

This shows the existence of c.e. sets, low, but not superlow.
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Bounded Jump Operator - a definition of Anderson and Csima

For A C N, define

A = {x 1 3i < x[pi(n) | & SL1F)(x) []}.

Obviously, AT <r A@ ', so if A>7 @, then AT =1 A.

We can also have:

>

>

>

0t =1 0'. So, for set A, A <,z O if and only if A is w-c.e.
A<y Al and

AT Lose A.

AT < AL

For some set A, AT L AG .

As indicated above, AT <1 A@ @ is always true.

For sets A, B with A <,.s B, At <; B.
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An analogue of Shoenfield’s Jump Inversion

Theorem (Anderson and Csima):

For a set C with 07 <,e C <uxe 0T, there is a set B <, 0 such that
C =w BY.

How about the analogue of Sacks inversion?

Still open.



Bounded-low set

A set A is bounded-low if AT <, 0, i.e. if Al is w-ce..

1. All superlow sets are bounded low.

2. There is a high bounded-low set. (Anderson, Csima and Lange)
3. There is a superhigh bounded-low set. (Wu and Wu))
4. There is a low, but not superlow, bounded-low set. (Wu and Wu)

5. This provides answers to two questions of Anderson, Csima and Lange in
their recent paper.



Thanks!



