When a strong reduction is considered

Wu Guohua

Nanyang Technological University

CTFM 2016

20-21 September, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Reductions which are stronger

- Turing reduction
- *m*-reduction
- truth-table reduction
- weak-truth-table reduction, i.e. bT-reduction

(ロ)、(型)、(E)、(E)、 E) の(の)

Reductions which are stronger

- Turing reduction
- *m*-reduction
- truth-table reduction
- weak-truth-table reduction, i.e. bT-reduction

Degrees:

- Turing degrees, wtt-degrees, tt-degrees, m-degrees
- Computably enumerable *r*-degrees, Δ_2^0 *r*-egrees, all *r*-degrees

Structural and Model-Theoretical properties

Computably Enumerable Turing-degrees

- Sacks splitting theorem
- Sacks density theorem
- Shoenfield conjecture
 - Lachlan-Yates minimal pair theorem: an instance of construction
 - There are nonrecursive c.e. sets such that

If C is Turing reducible to both A and B, then C is recursive.

Requirements:

 $\mathcal{R}_e: \Phi_e^A = \Phi_e^B = f \text{ total } \Rightarrow f \text{ recursive.}$

- Lattice embeddings/nonembeddings
- Lachlan's nonsplitting theorem and monster constructions

Computably Enumerable wtt-degrees

wtt-reduction was first proposed by Friedberg and Rogers, around 1956.

Reconsider the requirement

$$\mathcal{R}_e: \Phi_e^A = \Phi_e^B = f \text{ total } \Rightarrow f \text{ recursive.}$$

Ladner and Sasso - Splitting+Density is true for the c.e. wtt-degrees.

- Each c.e. Turing degree either contains one or infinitely many c.e. wtt-degrees.
- Each nonzero c.e. wtt-degree contains a simple set.

• $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem

- $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem
- $\mathcal{K}^{A} = \{e : \Phi_{e}^{A}(e) \downarrow\}$, relativised Halting problem

- $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem
- $K^A = \{e : \Phi_e^A(e) \downarrow\}$, relativised Halting problem
- K^A , is called the Turing Jump of A, denoted as A'.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem
- $K^A = \{e : \Phi_e^A(e) \downarrow\}$, relativised Halting problem
- K^A , is called the Turing Jump of A, denoted as A'.

• ' is increasing, and has range $\geq 0'$.

- $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem
- $K^A = \{e : \Phi_e^A(e) \downarrow\}$, relativised Halting problem
- K^A , is called the Turing Jump of A, denoted as A'.
- ' is increasing, and has range $\geq 0'$.

Jump Inversion Theorems:

Friedberg, Shoenfield, Sacks

- $K = \{e : \varphi_e(e) \downarrow\}$, the Halting problem
- $K^A = \{e : \Phi_e^A(e) \downarrow\}$, relativised Halting problem
- K^A , is called the Turing Jump of A, denoted as A'.
- ' is increasing, and has range $\geq 0'$.

Jump Inversion Theorems:

Friedberg, Shoenfield, Sacks

- Low degrees and High degrees, High/Low hierarchy
- Sacks: There exist intermediate c.e. degrees, i.e. not low_n, not high_n for any n.

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.
- A set *B* is superhigh, if $\emptyset'' \leq_{tt} H'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.
- A set *B* is superhigh, if $\emptyset'' \leq_{tt} H'$.
- ► There are superlow c.e. sets A and B such that Ø' ≤_T A ⊕ B. (Bickford and Mills, 1982)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.
- A set *B* is superhigh, if $\emptyset'' \leq_{tt} H'$.
- ▶ There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)
- ▶ We cannot strength "Turing reduction" above as "*wtt*-reduction", as Bickford and Mills also proved
 - ▶ If A is superlow and \emptyset' is *wtt*-reducible to $A \oplus W$, then \emptyset' is *wtt*-reducible to W.

- A set A is superlow, if $A' \leq_{tt} \emptyset'$.
- A set *B* is superhigh, if $\emptyset'' \leq_{tt} H'$.
- ▶ There are superlow c.e. sets A and B such that $\emptyset' \leq_T A \oplus B$. (Bickford and Mills, 1982)
- We cannot strength "Turing reduction" above as "wtt-reduction", as Bickford and Mills also proved
 - ▶ If A is superlow and \emptyset' is *wtt*-reducible to $A \oplus W$, then \emptyset' is *wtt*-reducible to W.
- > This shows the existence of c.e. sets, low, but not superlow.

Bounded Jump Operator - a definition of Anderson and Csima

For $A \subseteq \mathbb{N}$, define

$$A^{\dagger} = \{ x : \exists i < x [\varphi_i(n) \downarrow \& \Phi_x^{A \upharpoonright \varphi_i(x)}(x) \downarrow] \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Obviously, $A^{\dagger} \leq_{T} A \oplus \emptyset'$, so if $A \geq_{T} \emptyset'$, then $A^{\dagger} \equiv_{T} A$.

Bounded Jump Operator - a definition of Anderson and Csima

For $A \subseteq \mathbb{N}$, define

$$A^{\dagger} = \{ x : \exists i < x [\varphi_i(n) \downarrow \& \Phi_x^{A \upharpoonright \varphi_i(x)}(x) \downarrow] \}.$$

Obviously, $A^{\dagger} \leq_{T} A \oplus \emptyset'$, so if $A \geq_{T} \emptyset'$, then $A^{\dagger} \equiv_{T} A$.

We can also have:

- $\emptyset^{\dagger} \equiv_1 \emptyset'$. So, for set $A, A \leq_{wtt} \emptyset^{\dagger}$ if and only if A is ω -c.e.
- $A \leq_1 A^{\dagger}$ and
- ► $A^{\dagger} \leq_{wtt} A$.
- $\blacktriangleright A^{\dagger} \leq_1 A'.$
- For some set A, A[†] ≤_{wtt} A ⊕ Ø'.
 As indicated above, A[†] ≤_T A ⊕ Ø' is always true.
- For sets A, B with $A \leq_{wtt} B, A^{\dagger} \leq_{1} B^{\dagger}$.

An analogue of Shoenfield's Jump Inversion

Theorem (Anderson and Csima):

For a set C with $\emptyset^{\dagger} \leq_{wtt} C \leq_{wtt} \emptyset^{\dagger\dagger}$, there is a set $B \leq_{wtt} \emptyset^{\dagger}$ such that $C \equiv_{wtt} B^{\dagger}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An analogue of Shoenfield's Jump Inversion

Theorem (Anderson and Csima):

For a set C with $\emptyset^{\dagger} \leq_{wtt} C \leq_{wtt} \emptyset^{\dagger\dagger}$, there is a set $B \leq_{wtt} \emptyset^{\dagger}$ such that $C \equiv_{wtt} B^{\dagger}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

How about the analogue of Sacks inversion?

An analogue of Shoenfield's Jump Inversion

Theorem (Anderson and Csima):

For a set C with $\emptyset^{\dagger} \leq_{wtt} C \leq_{wtt} \emptyset^{\dagger\dagger}$, there is a set $B \leq_{wtt} \emptyset^{\dagger}$ such that $C \equiv_{wtt} B^{\dagger}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How about the analogue of Sacks inversion?

Still open.

Bounded-low set

A set A is bounded-low if $A^{\dagger} \leq_{wtt} \emptyset^{\dagger}$, i.e. if A^{\dagger} is ω -c.e..

- 1. All superlow sets are bounded low.
- 2. There is a high bounded-low set. (Anderson, Csima and Lange)
- 3. There is a superhigh bounded-low set. (Wu and Wu))
- 4. There is a low, but not superlow, bounded-low set. (Wu and Wu)
- 5. This provides answers to two questions of Anderson, Csima and Lange in their recent paper.

・ロト ・ 戸 ・ モ ト ・ モ ・ うへぐ

Thanks!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>