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Main Motivation

I Q: What is an algorithm?

I A: This was answered by Gödel, Turing, Church and others
in 1930s.

I Q: What is an algorithm on real numbers? Or on domains
other than ω?

I A: This was answered by many people, for example, TTE
model (originated from Turing), Blum-Shub-Smale (BSS)
on real numbers; Kleene and others on higher types;
infinite Turing machines (Hampkins and others).
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Differences

I On ω, different formulations give rise to the same notion of
computability; furthermore, it fits the intuition of working
mathematicians.

I On other domains, there are competing notions of
computability, based on different intuitions. For example,
TTE and BSS.

I The main difficulty: Objects are actual infinite, but
algorithms must be “finitary”. The key is how to balance the
two.
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In this Talk

I Review two earlier formalizations of computability on
domains beyond natural numbers.

I Introduce the third formalization using λ-calculus.

I In this talk, we only look at Baire space N = ωω. But it also
works on R with some major effort.

I (We show that these formalizations are equivalent.)
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Computability on Baire Space

I Baire space N = ωω, whose elements are referred as
type-one objects.

I We also need natural numbers (type-zero objects) for our
organization.

I We consider functions from Nm ×N n → N and
Nm ×N n → N , from mixed types to mixed types.

I To make explanation easier, we refer to N (the type-zero
objects) “blue” and N (the type-one objects) “red”.



Computability on Baire Space

I Baire space N = ωω, whose elements are referred as
type-one objects.

I We also need natural numbers (type-zero objects) for our
organization.

I We consider functions from Nm ×N n → N and
Nm ×N n → N , from mixed types to mixed types.

I To make explanation easier, we refer to N (the type-zero
objects) “blue” and N (the type-one objects) “red”.



Computability on Baire Space

I Baire space N = ωω, whose elements are referred as
type-one objects.

I We also need natural numbers (type-zero objects) for our
organization.

I We consider functions from Nm ×N n → N and
Nm ×N n → N , from mixed types to mixed types.

I To make explanation easier, we refer to N (the type-zero
objects) “blue” and N (the type-one objects) “red”.



Computability on Baire Space

I Baire space N = ωω, whose elements are referred as
type-one objects.

I We also need natural numbers (type-zero objects) for our
organization.

I We consider functions from Nm ×N n → N and
Nm ×N n → N , from mixed types to mixed types.

I To make explanation easier, we refer to N (the type-zero
objects) “blue” and N (the type-one objects) “red”.



First Formalization: Using Function Schemes

Definition
The class of partial recursive functions over N is the smallest
class C s.t.
(1) C contains the following basic functions:

(a) Zero function Z : N→ N;
(b) successor function S : N→ N; and
(c) the projection functions;
(d) all TTE computable functions (later); and
(e) the characteristic function χ of {0N } from N to N.

(2) C is closed under
(a) composition (provided the types match);
(b) primitive recursion (w.r.t. natural number variable); and
(c) µ-operator (w.r.t. natural number variable).
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TTE-computable functions

Given f : ω<ω → ω<ω and x ∈ N , we say that f is monotone
along x , if
I f (x � n) ↓ for infinitely many n,
I for every n < m, if f (x � n) ↓ and f (x � m) ↓ then

f (x � n) ⊆ f (x � m), and
I limn→∞ |f (x � n)| =∞.

The function F : N → N induced by f is defined to be

F (x) =

{
sup {f (σ) : σ ⊂ x} , if f is monotone along x ,
↑, otherwise.

Definition
We say that F : N → N is TTE-computable if it is induced by a
partial recursive function f : ω<ω → ω<ω.
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Remarks

I Q: Why TTE-computable functions are “effective”?

I A: Because we have an effective procedure f which
uniformly compute F (x) up to any given precision; anything
“shorter than” x will be computable in the standard sense.

I We just take the natural step to pass the closure point
(using continuity).

I Justification for χ: “if... then... else" is essential to any
algorithm, thus we must know some atomic properties of
the objects.

I We have another justification in terms of the machines.
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Second Formalization: Using Machines

M

S0 S1 S2

kBillboard

tape for master

real number input

zero test

working and output tapes

· · · · · ·

Figure 1. A Master-Slave machine

1



Transitions of Master-Slave Machines

I M has a finite set Q for its states. (We ignore the slaves, as
they are the same universal TM.)

I Its program is a finite set of quadruples. (We assume
single tape for convenience.)

I The quadruples are of the following three types:
(1) Standard ones qaa′q′ or qaDq′ where D ∈ {L,R}.
(2) Slave action command qaSq′: Slaves execute the

instructions on the billboard; when every slave machine
halts, the state of the master becomes q′.

(3) Zero-test command E01q: To detect if a sequence is zero
sequence, change the boolean bit accordingly, and change
the master state from E to q. (Note that symbols 0 and 1
are unimportant.)



Transitions of Master-Slave Machines

I M has a finite set Q for its states. (We ignore the slaves, as
they are the same universal TM.)

I Its program is a finite set of quadruples. (We assume
single tape for convenience.)

I The quadruples are of the following three types:
(1) Standard ones qaa′q′ or qaDq′ where D ∈ {L,R}.
(2) Slave action command qaSq′: Slaves execute the

instructions on the billboard; when every slave machine
halts, the state of the master becomes q′.

(3) Zero-test command E01q: To detect if a sequence is zero
sequence, change the boolean bit accordingly, and change
the master state from E to q. (Note that symbols 0 and 1
are unimportant.)



Transitions of Master-Slave Machines

I M has a finite set Q for its states. (We ignore the slaves, as
they are the same universal TM.)

I Its program is a finite set of quadruples. (We assume
single tape for convenience.)

I The quadruples are of the following three types:
(1) Standard ones qaa′q′ or qaDq′ where D ∈ {L,R}.
(2) Slave action command qaSq′: Slaves execute the

instructions on the billboard; when every slave machine
halts, the state of the master becomes q′.

(3) Zero-test command E01q: To detect if a sequence is zero
sequence, change the boolean bit accordingly, and change
the master state from E to q. (Note that symbols 0 and 1
are unimportant.)



Transitions of Master-Slave Machines

I M has a finite set Q for its states. (We ignore the slaves, as
they are the same universal TM.)

I Its program is a finite set of quadruples. (We assume
single tape for convenience.)

I The quadruples are of the following three types:
(1) Standard ones qaa′q′ or qaDq′ where D ∈ {L,R}.
(2) Slave action command qaSq′: Slaves execute the

instructions on the billboard; when every slave machine
halts, the state of the master becomes q′.

(3) Zero-test command E01q: To detect if a sequence is zero
sequence, change the boolean bit accordingly, and change
the master state from E to q. (Note that symbols 0 and 1
are unimportant.)



Transitions of Master-Slave Machines

I M has a finite set Q for its states. (We ignore the slaves, as
they are the same universal TM.)

I Its program is a finite set of quadruples. (We assume
single tape for convenience.)

I The quadruples are of the following three types:
(1) Standard ones qaa′q′ or qaDq′ where D ∈ {L,R}.
(2) Slave action command qaSq′: Slaves execute the

instructions on the billboard; when every slave machine
halts, the state of the master becomes q′.

(3) Zero-test command E01q: To detect if a sequence is zero
sequence, change the boolean bit accordingly, and change
the master state from E to q. (Note that symbols 0 and 1
are unimportant.)



Fine Tuning

Lemma
A TTE-computable function F : N → N (say induced by f ) is
induced by some partial recursive function g which is
non-decreasing and whose domain is downward closed.
Furthermore, there is a total recursive function k : N→ N which
transfer an index e of f to an index of g.

Definition
We call a master-slave machine M fine tuned (for N ) if the
following convention is added: When the master writes the
code e on the billboard, the i-th slave just computes ϕk(e)(x � i).
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The Definition

Definition
We say that a partial function f is MS-computable if there is a
(fine-tuned) master-slave machine M such that

f (n; x) =


y , if M on input (n; x) halts

and the output is y ;
undefined, otherwise.



The Third Formulation: Applied λ-Calculus

Definition
(T1) (a) Variables xi : i ∈ ω are λ-terms.

(b) Constants a for a ∈ N are λ-terms. We also have ⊥ for the
divergency.

(c) We have a special constant φ which is a λ-term.

(T2) (application) If M and N are λ-terms, then MN is a λ-term.
(T3) (abstraction) If M is a λ-term and x is a variable, then λx .M

is a λ-term.

We say that a λ-term is pure if it does not contain the constant
symbols a.
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Reduction Rules

Recall: There are numerals pnq which are λ-terms to code the
natural numbers n.

Definition

(A1) (β conversion) (λx .M)N → M[x := N].
(A2) (δ-rules) For the sake of readability, we write φ as E (for the

characteristic function of {0N }) and φ . . . φ︸ ︷︷ ︸
e+2

as Φe.

(1) Φea→ b, if the e-th TTE function on input a is defined and
the output is b; otherwise Φea→ ⊥.

(2) E0→ p0q and Ea→ p1q for a ∈ N and a 6= 0N .
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Solvable and Unsolvable

Theorem (Church-Rosser)
If M →∗ M1 and M →∗ M2 then there is a λ-term N such that
M1 →∗ N and M2 →∗ N.
Thus if a λ-term reduces to a normal form it is unique.

Definition
We say that a λ-term M is solvable if there are λ-terms
N1, . . . ,Nk such that either

MN1 . . .Nk →∗ I

or
(E(MN1 . . .Ni))Ni+1 . . .Nk →∗ I,

where I is λx .x . We say that M is unsolvable if M is not
solvable.
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The Third Formalization

Definition
We say that f is λ-definable if there exists a pure λ-term F such
that for all ~z ∈ Nm ×N n,

f (~z) = y implies Fp~zq→∗ pyq
f (~z) ↑ implies Fp~zq is unsolable.

In this case, we say that f is λ-defined by F .



Equivalence Theorem for Computation over N

Theorem
Over N , f is partial recursive iff f is MS-computable iff f is
λ-definable.

We show that { par rec} ⊆ {λ-def} ⊆ { MS-comp} ⊆ { par rec}.
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A Normal Form Theorem for Baire Space Computation

Theorem
There are primitive recursive over N predicate T (e, x , z) and
function U(z; x) such that for all partial recursive function f over
N , there is an m, such that,

f (x) = U(µzT (m, x , z); x).



Remarks on relations with BSS and TTE

I Starting from BSS models (assuming no real parameters),
add exponential functions as a primitive

I Adding all TTE-computable functions

I Furthermore, the TTE-computable functions must be
coded uniformly internally (This requires natural numbers
available).

I Then we have MS-computable functions, in this sense, it is
the minimal model containing BSS and TTE.
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Final Remarks

I Classical Church Thesis (on N): Intuitively computable is
Turing computable.

I Q: Can we have something similar for Baire space?

I Can algorithms be just the blue part? To be more precise,
fix an effectively indexed family of functions F , define
partial recursive functions with F as primitives;
Master-slave machines with slaves computing F ;
λ-calculus with external rules induced by F . Can we
always show they are equivalent?

I Can we lift them even further?
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