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Trees with finitely many paths

We will consider the following well-known theorem.

Theorem

Let T ⊆ 2<N be an infinite computable tree. If T has at most finitely
many paths, then T has a computable path.

Question
How can we understand this situation in reverse mathematics?

“Any infinite tree T ⊆ 2<N which has at most finitely-many
paths has a path” is already equivalent to WKL since ¬WKL
implies the existence of an infinite tree with no path.

Thus, we will consider several structural conditions to support
the finiteness of paths.
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A set P ⊆ N<N is said to be prefix-free if σ⊥τ for any σ, τ ∈ P.

For a given tree T ⊆ N<N, put
T=n := {σ ∈ T | |σ| = n},
Text := {σ ∈ T | ∀n ∈ N∃τ ∈ T=n τ ⊇ σ}.

We will consider the following versions of WKL.
1 WKL(pf-bd): an infinite binary tree T ⊆ 2<N has a path if

there exists c ∈ N such that for any prefix-free set P ⊆ T,
|P | ≤ c.

2 WKL(w-bd): an infinite binary tree T ⊆ 2<N has a path if
there exists c ∈ N such that for any n ∈ N, |T=n | ≤ c, where
T=n = {σ ∈ T | lh(σ) = n}.

3 WKL(ext-bd): an infinite binary tree T ⊆ 2<N has a path if
there exists c ∈ N such that for any n ∈ N, |T=n

ext | ≤ c, where
T=n

ext = {σ ∈ T | lh(σ) = n ∧ σ is extendible}.

* For a fixed standard c ∈ ω, they are all provable within RCA0.
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We will also consider the following versions of KL.
1 KL(pf-bd): an infinite tree T ⊆ N<N has a path if there exists

c ∈ N such that for any prefix-free set P ⊆ T, |P | ≤ c.
2 KL(w-bd): an infinite tree T ⊆ N<N has a path if there exists

c ∈ N such that for any n ∈ N, |T=n | ≤ c.
3 KL(ext-bd): an finitely-branching infinite tree T ⊆ N<N has a

path if there exists c ∈ N such that for any n ∈ N, |T=n
ext | ≤ c.

For any Π0
1 set X ⊆ N, {X} ⊆ NN is a Π0

1 singleton.
Thus, we have the following.

Proposition (RCA0, folklore)

KL(ext-bd) is equivalent to ACA0.
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Induction strength

WKL(pf-bd), WKL(w-bd), WKL(ext-bd), KL(pf-bd) and
KL(w-bd) are all true in ω-model of RCA0.

Theorem
1 WKL(pf-bd) is provable in RCA0.
2 WKL(w-bd) and WKL(ext-bd) are provable in RCA0 + IΣ0

2.
3 KL(pf-bd) is provable in RCA0 + BΣ0

2.
4 KL(w-bd) is provable in RCA0 + IΣ0

2.

Key idea: find a maximal prefix-free set P ⊆ T so that any element
of P has no “essential” branching.
1,3: take b0 = max{a ≤ b | ∃P ⊆ T(P is p-free and |P | = a)}.
2: take b0 = min{a ≤ b | ∀n(|T=n

ext | ≤ a)}.
4: formalize Chaitin’s proof and combine with 2.
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Converse

Theorem (RCA0)

KL(pf-bd) is equivalent to BΣ0
2.

Theorem (RCA0)

KL(w-bd) is equivalent to IΣ0
2.

The following lemma is essential for the second theorem.

Lemma (RCA0)

If IΣ0
2 fails, then there exists a set X and a Π0,X

1 -set A such that A
is unbounded and |A | ≤ c for some c ∈ N.
(Here, A is said to be unbounded if ∀n ∈ N∃m ≥ n m ∈ A, and
|A | ≤ c means that for any finite set F ⊆ A (coded by a natural
number), |F | ≤ c.)
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Theorem (RCA0)

KL(w-bd) is equivalent to IΣ0
2.

Proof.

¬IΣ0
2 → KL(w-bd): By the lemma, there exists a set X and a

Π0,X
1 -set A such that A is unbounded and |A | ≤ c for some c ∈ N.

(Note that A cannot exist as a set.)
Write n ∈ A ↔ ∀mθ(m, n,X) where θ is a Σ0

0-formula. Then, define
a Σ0

1 tree T ⊆ 2<N as

σ ∈ T ↔ ∃m > lh(σ)(∀i < lh(σ)(σ(i) = 1↔ ∀m′ < m θ(m′, i,X))

∧ |{i < lh(σ) | ∀m′ < m θ(m′, i,X)}| ≤ c).

Then, T is infinite and there are at most c-many elements in T=n

for any n ∈ N. A path of T should be identical with A, so T cannot
have a path. □
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Is induction essentially needed?

Proposition (RCA0)

WKL(w-bd) and WKL(ext-bd) are equivalent.

Do they also require induction?
⇒ No! WKL(ext-bd) is provable from WKL0 which is a

Π1
1-conservative extension of IΣ0

1.

Definition (Very smallness, Binns/Kjos-Hanssen)

VSMALL asserts the following: an infinite binary tree T ⊆ 2<N has
a path if for any function f : N→ N, there exists n ∈ N such that
|T=f(n)

ext | < n.

VSMALL is a very weak fragment of WKL which cannot
imply DNR, but it is not derived from WWKL0.
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Is induction essentially needed?

Proposition (RCA0)

WKL(ext-bd) is provable from IΣ0
2 ∨ VSMALL.

Thus, it is much weaker than WKL0. However,

Theorem

WWKL0 does not imply WKL(ext-bd).

The proof is very similar to the separation WWKL0 ⇏ VSMALL by
Binns/Kjos-Hanssen.

Lemma (RCA0, Simpson)

If X is a c.e. set such that X >T 0, then X can be split into two
c.e. sets X = Y0 ⊔ Y1 such that Y0 and Y1 are computably
inseparable.
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We will construct a model (M,S) |= WWKL0 + ¬IΣ0
2 but

WKL(ext-bd) fails in it.

Let M |= ¬IΣ0
2. Then, there exists a Π0

1-set A such that A is
unbounded and |A | ≤ c for some c ∈ M.

Thus, in M, Ac >T 0.

Take c.e. sets in M B0 ⊔ B1 = Ac such that Sep(B0,B1) has no
computable member, and take a computable T ⊆ 2<M such
that [T ] = Sep(B0,B1).

By a usual Harrington’s forcing argument, there exists
Z ∈ MLR such that Z ̸≥w [T ].

Then, there exists S ≤w Z such that (M,S) |= WWKL0.

Since T=n
ext ≤ |A | ≤ c and T has no path in S, WKL(ext-bd)

fails in (M,S).
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Is induction essentially needed?

Is induction essential for WKL(ext-bd)?
⇒ Yes, in some sense.

Theorem (RCA0)

WKL(ext-bd) plus ∃X∀Y(Y ≤T X) implies IΣ0
2.

Assume ∃X∀Y(Y ≤T X) and ¬IΣ0
2. Then, there exists a

Π0,X
1 -set A such that A is unbounded and |A | ≤ c for some

c ∈ N.

Thus Ac >T X.

Take Σ0,X
1 -sets B0 ⊔ B1 = Ac such that Sep(B0,B1) has no

X-computable member, and take an X-computable T ⊆ 2<N

such that [T ] = Sep(B0,B1).

Since T=n
ext ≤ |A | ≤ c and T has no path, WKL(ext-bd) fails.
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Is induction essentially needed?

Question

Does WKL(ext-bd) imply IΣ0
2 ∨ VSMALL?

In general, does WKL(ext-bd) imply some weak fragment of
WKL which is computably false in the absence of IΣ0

2?

⇒ Yes, in a weak sense. It implies, at least, ∀X∃Y(Y ̸≤T X).

(Thus, we have WKL(ext-bd)⇒ IΣ0
2 ∨ ∀X∃Y(Y ̸≤T X).)

Does it imply something stronger?
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Thank you!
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