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Decision Problems in Matrix Semigroups:
algorithmic decidability and computational complexity

Igor Potapov ⇤

A large number of naturally defined matrix problems are still unanswered de-
spite the long history of matrix theory. Originally in Arthur Cayley’s “A Memoir
on the Theory of Matrices” in 1858, the notion of a matrix arises naturally from
abbreviated notations for a set of linear equations where he also defined associ-
ated operation of multiplication, notions of determinant, inverse matrices, etc.
Nowadays questions on matrices and matrix problems emerge in much larger
context as they appear in the analysis of various digital processes, verification
problems [18], in the context of control theory questions [2]. Moreover problems
on matrix products have been associated with several long standing open prob-
lems in algebraic number theory and transcendence theory, Nash equilibria, in
the theory of joint spectral radius and its applications [9, 14, 18, 19].

Many simply formulated and elementary problems for matrices are inher-
ently di�cult to solve even in dimension two, and most of these problems become
undecidable in general starting from dimension three or four [6, 4, 7, 9, 10, 20].
Only few decidability results are known so far, see for example [1, 12, 5, 11, 13,
21, 22, 23].

Let us given a finite set of square matrices (known as a generator) which
is forming a multiplicative semigroup S. The classical computational problems
for matrix semigroups are:

• Membership (Decide whether a given matrix M belong to a semigroup S)
and two special cases such as: Identity (i.e. if M is the identity matrix)
and Mortality (i.e. if M is the zero matrix) problems

• Vector reachability (Decide for a given vectors u and v whether exist a
matrix M in S such that M · u = v)

• Scalar reachability (Decide for a given vectors u, v and a scalar L whether
exist a matrix M in S such that u ·M · v=L)

• Freeness (Decide whether every matrix product in S is unique, i.e. whether
it is a code) and some variants of the freeness such as finite freeness prob-
lem, the recurrent matrix problem, the unique

⇤Department of Computer Science, University of Liverpool, Email:
potapov@liverpool.ac.uk.
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• factorizability problem, vector freeness problem, vector ambiguity prob-
lems, etc.

The undecidability proofs in matrix semigroups are mainly based on vari-
ous techniques and methods for embedding universal computations into matrix
products. The case of dimension two is the most intriguing since there is some
evidence that if these problems are undecidable, then this cannot be proved
directly using previously known constructions. Due to a severe lack of methods
and techniques the status of decision problems for 2 ⇥ 2 matrices (like mem-
bership, vector reachability, freeness) is remaining to be a long standing open
problem not only for matrices over algebraic, complex, rational numbers but
also for integer matrices.

Recently, a new approach of translating numerical problems of 2⇥ 2 integer
matrices into variety of combinatorial and computational problems on words
and automata over group alphabet and studying their transformations as specific
rewriting systems [11, 13] have led to a few results on decidability and complexity
for some subclasses:

• The membership problem for 2⇥ 2 nonsingular integer matrices is decid-
able [23]. The algorithm relies on a translation of numerical problems on
matrices into combinatorial problems on words. It also makes use of some
algebraic properties of well-known subgroups of GL(2,Z) and various new
techniques and constructions that help to convert matrix equations into
the emptiness problem for intersection of regular languages.

• The Identity problem in SL(2,Z) is NP-complete [8, 5]. Our NP algo-
rithm is based on various new techniques that allow us to operate with
compressed word representations of matrices without explicit exponential
expansion.

• The vector reachability problem over a finitely generated semigroup of
matrices from SL(2,Z) and the point to point reachability (over rational
numbers) for fractional linear transformations, where associated matrices
are from SL(2,Z) are decidable [21].

Similar techniques have been applied to show that the freeness problem is co-NP-
hard [16] as well as to study the complexity of other freeness problems such as
finite freeness problem, the recurrent matrix problem, the unique factorizability
problem, vector freeness problem, vector ambiguity problems, etc [15].

Currently we focus on decidability of matrix problems in the Special Linear
Group in dimension three, 3⇥ 3 matrices with determinant one. In the seminal
paper of Paterson in 1970 [20], an injective morphism from pairs of words into
3 ⇥ 3 integral matrices was used to prove the undecidability of the mortality
problem, and later led to many undecidability results of matrix problems in
dimension three. In [17] it was shown that there is no embedding from pairs
of words into 3 ⇥ 3 integral matrices with determinant one, i.e., into SL(3,Z),
which provides strong evidence that computational problems in SL(3,Z) may be
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decidable, as all known undecidability techniques for low-dimensional matrices
are based on encoding of Turing machine computations via Post’s Correspon-
dence Problem (PCP), which cannot be applied in SL(3,Z) following the results
of [17]. In the case of the PCP encoding, matrix products extended by right
multiplication correspond to a Turing machine simulation, and the only known
proof alternatives rely on recursively enumerable sets and Hilbert’s Tenth Prob-
lem, but provide undecidability for matrix equations of very high dimensions.
[3].
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[18] Joël Ouaknine, João Sousa Pinto, and James Worrell. On termination of
integer linear loops. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, pages 957–969. SIAM, 2015.
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Bar induction and bar recursion with respect to
continuity on Baire space

Makoto Fujiwara
Waseda Institute for Advanced Study, Waseda University

Bar induction is originally discussed by L. E. J. Brouwer under the name
of “bar theorem” in his intuitionistic mathematics but first formalized by
S. C. Kleene probably in late 1950’s. On the other hand, in his posthu-
mously published paper [1], C. Spector introduced a principle so-called “bar
recursion” and gave a consistency proof of classical analysis by extending K.
Gödel’s consistency proof of Peano arithmetic by using the so-called Dialec-
tica interpretation. As already mentioned in [1], bar recursion is an analogue
of bar induction in the sense that bar recursion is a principle of definition
and bar induction is a corresponding principle of proof. In particular, bar
induction of type N (namely, formalized Brouwer’s bar theorem) is briefly
compared with bar recursion in an intuitionistic setting (namely, in the pres-
ence of continuity principle) in [1, Section 6 with footnote 5 and 6 written
by G. Kreisel]. However, the exact relation between them from the purely
constructive point of view is still unknown.

In this talk, we systematically study the relation between several forms
of bar induction of type N and bar recursion for continuous functions of type
NN → N, which is classically valid while bar recursion in general is not so.
Among other things, we show that the existence of bar recursor for continu-
ous functions with continuous modulus of type NN → N is derived from the
decidable bar induction of type N over the extensional versions of intuition-
istic arithmetic in all finite types with the axiom scheme of countable choice.
In addition, the converse is also the case over that system augmented with
the characteristic principles of the Dialectica interpretation.

This is a joint work with Tatsuji Kawai (Japan Advanced Institute of
Science and Technology).

References

[1] C. Spector, Provably recursive functionals of analysis: a consistency
proof of analysis by an extension of principles in current intuitionis-
tic mathematics. In F. D. E. Dekker, editor, Recursive Function The-
ory: Proceedings of Symposia in Pure Mathematics, volume 5, pp. 1–27.
American Mathematical Society, Providence, Rhode Island, 1962.

1



Independent distributions on a
multi-branching AND-OR tree of height 2

(a joint work with Mika Shigemizu and Koki Usami)

Toshio Suzuki∗a

aTokyo Metropolitan University, Japan

We investigate an AND-OR tree T of height h and a probability distribu-
tion d on the truth assignments to the leaves. The cost denotes the expected
number of leaves probed during the comuptation. If an algorithm is a min-
imizer of the cost among all algorithms being considerd then it is called an
optimal algorithm (with respect to d). The following is a known result.
- (Tarsi,J.ACM, 1983) If d is an independent and identical distribution

(IID) such that the probability of a leaf having value 0 ̸= 0, 1 then (under a
certain assumptions) there exists an optimal algorithm that is depth-first.
Depth-first algorithms have an advantage that they are compatible with

induction on subtrees. We investigate the case where d is an independent
distribution (ID) and the probability depends on each leaf. The following
are known results.
- (S.,2018) If h ≥ 3 then Tarsi-type result does not hold.
- (S.,2018) If T is complete binary and h = 2 then Tarsi-type result holds.
We ask whether Tarsi-type result holds in the case of h = 2. Here, a child

node of the root is either an OR-gate or a leaf: The number of child nodes
of an internal node is arbitrary, and depends on an internal node.
- (Main result) If h = 2 then Tarsi-type result holds.
Our strategy of the proof is to reduce the problem to the case of directional

algorithms. We discuss why our proof does not apply to height 3 trees.
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tributions on a multi-branching AND-OR tree of height 2. Preprint,
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Reverse mathematics of the �nite downwards closed
subsets of Nk ordered by inclusion

Florian Pelupessy

The following was conjectured by Hatzikiriakou and Simpson in Remark 6.2 in [1].

De�nition 1 We order k-tuples coordinatewise.

Theorem 2 RCA0 proves that the following are equivalent:

1. !!! is well founded,

2. For every k: the �nite downwards closed subsets of Nk, ordered by inclusion, are a well partial
order.

We con�rm that this is the case, also with RCA⇤0 as base theory.
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On one-variable modal µ-calculus

Misato Nakabayashi∗

A Joint work with Wenjuan Li†and Kazuyuki Tanaka‡

Modal µ-calculus, introduced by Kozen, is an extension of modal propositional logic by adding a
greatest fixpoint operator µ and a least fixpoint operators ν. It is well suited for specifying properties of
transition systems, and closely related to tree automata and parity games.

A fundamental issue on modal µ-calculus is the strictness of alternation hierarchy of the Lµ-formulas,
which are classified by their alternation depth, namely, the number of alternating blocks of µ and ν.
Roughly speaking, the class Σµ

0 = Πµ
0 is the class of Lµ-formulas with no fixed-point operations; Σµ

n+1
(resp. Πµ

n+1) is the closure of Σµ
n and Πµ

n under the composition (i.e., substitution) and µ (resp. ν). A
classical result by Rabin implies that ∆µ

2 (= Σµ
2 ∩ Πµ

2 ) is equal to the compositions of Σµ
1 and Πµ

1 , which
may also be represented by one-variable formulas.

In this talk, we first show the relationship between one-variable Lµ-formulas and weak alternating tree
automata. An alternating tree automaton A = (A,Q, qI , δ,Ω) with a priority function Ω : Q → {0, . . . , n}
is said to be weak if δ has the following additional property:

for all q ∈ Q and a ∈ A, if q′ occurs in δ(q, a), then Ω(q′) ≤ Ω(q).

Then, we have

Theorem There is an effective translation procedure between a one-variable Lµ-formula ϕ and a weak
alternating tree automaton A so that for all finitely branching transition system (S, s),

(S, s) |= ϕ ⇐⇒ (S, s) ∈ L(A).

Furthermore, the alternation depth of a one-variable Lµ-formula ϕ corresponds to the number of
the priorities of the associated automaton A. Therefore, we conclude the strictness of the alternation
hierarchy of one-variable Lµ-formulas within ∆µ

2 from the strictness of the hierarchy of weak alternating
tree automata first proved by Mostowski.

Next, we consider infinitely branching transition systems, or especially recursively presented transition
systems (RPTS). Bradfield [1] adapted Lubarsky’s alternation hierarchy of arithmetic µ-calculus (ΣAµ

n ,
ΠAµ

n ) to show that for Lµ-formula ϕ ∈ Σµ
n, the denotation ||ϕ|| in any RPTS is a ΣAµ

n definable set of

integers, and conversely, for any arithmetic µ-calculus formula Φ ∈ ΣAµ
n , there is an RPTS R and an

Lµ-formula ϕ ∈ Σµ
n such that ||Φ|| is definable by ϕ over R. Thus, ∆µ

2 in RPTS’s corresponds to the
class of sets S of integers such that both S and its complement are definable by a Σ1

1-monotone operator.
Therefore, in RPTS’s, ∆µ

2 is not equal to the compositions of Σµ
1 and Πµ

1 , which corresponds to the
compositions of Π1

1 and Σ1
1 in integers.

Finally, we introduce the transfinite extension of the hierarchy of one-variable modal µ-calculus, and
show that it exhausts ∆µ

2 in RPTS’s.
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A rBHH ;Bp2 � imiQ`B�H QM ;�K2@i?2Q`2iB+ T`Q#�#BHBiv �M/ �H;Q`Bi?KB+ `�M/QKM2bbX
S`Q#�#BHBiv Bb � bi`�M;2 MQiBQM- �M/ Bib 7Q`KmH�iBQM �M/ BMi2`T`2i�iBQM Bb biBHH

QM;QBM;X � K�i?2K�iB+�H 7Q`KmH�iBQM Q7 i?2 MQiBQM Q7 T`Q#�#BHBiv ?�b #22M ;Bp2M
#v EQHKQ;Q`Qp- r?B+? r2 +�HH K2�bm`2@i?2Q`2iB+ T`Q#�#BHBiv i?2Q`vX �++Q`/BM; iQ
i?2 i?2Q`v- T`Q#�#BHBiv Bb bQK2i?BM; rBi? r?B+? bQK2 �tBQKb ?QH/X h?2`2 �`2
bQK2 �Hi2`M�iBp2b bm+? �b i?2 i?2Q`v Q7 +QHH2+iBp2b #v pQM JBb2b �M/ �H;Q`Bi?KB+
T`Q#�#BHBiv #v aQHQKQMQzX AM #Qi? i?2Q`B2b- `�M/QK b2[m2M+2b �`2 2bb2MiB�H MQiBQMbX

h?2 KQbi r2HH@FMQrM MQiBQM Q7 `�M/QKM2bb Bb #v J�`iBM@Gƺ7X �M BM}MBi2 #BM�`v
b2[m2M+2 Bb JG@`�M/QK B7 Bi Bb � ivTB+�H b2[m2M+2 �M/ Bi �pQB/b �HH 2z2+iBp2 MmHH
b2ibX JG@`�M/QKM2bb +�M #2 +?�`�+i2`Bx2/ #v mMT`2/B+i�#BHBiv- b�v- `�M/QK B7 �Mv
2z2+iBp2 #2iiBM; bi`�i2;v /Q2b MQi bm++22/ �HQM; i?2 b2[m2M+2X �HbQ #v BM+QK@
T`2bbB#BHBiv- `�M/QK B7 2p2`v BMBiB�H b2;K2Mi /Q2b MQi ?�p2 b?Q`i /2b+`BTiBQMbX q2
?�p2 BMimBiBQM i?�i `�M/QK B7 ivTB+�H- mMT`2/B+i�#H2- Q` +QKTH2tX PM2 Q7 BMi2`2biBM;
i?BM;b �#Qmi i?2 i?2Q`v Q7 `�M/QKM2bb Bb i?�i r2 +�M K�i?2K�iB+�HHv T`Qp2 bm+?
i?BM;bX

h?2 i?2Q`v Q7 `�M/QKM2bb ?�b � bi`QM; `2H�iBQM rBi? +QKTmi�#BHBiv i?2Q`vX
*?�BiBMǶb ⌦ Bb � H27i@+X2X `2�H- r?B+? K2�Mb Bi ?�b � +QKTmi�#H2 �TT`QtBK�iBQM 7`QK
#2HQr- �M/ Bb JG@`�M/QK �i i?2 b�K2 iBK2X aQHQp�v `2/m+B#BHBiv Bb � MQiBQM iQ +QK@
T�`2 irQ H27i@+X2X `2�Hb BM i?2 b2Mb2 Q7 �TT`QtBK�#BHBivX h?2 iQT 2H2K2Mi Q7 aQHQp�v
/2;`22b BM H27i@+X2X `2�Hb Bb 2t�+iHv i?2 +H�bb Q7 H27i@+X2X JG@`�M/QK `2�HbX h?2`2 �`2
K�Mv bi�i2K2Mib �#Qmi i?2 `2H�iBQM #2ir22M `�M/QKM2bb �M/ +QKTmi�#BHBiv- r?B+?
QM2 +�M MQi bi�i2 BM i?2 K2�bm`2@i?2Q`2iB+ T`Q#�#BHBivX

:�K2@T`Q#�#BHBiv T`Q#�#BHBiv ?�b �MQi?2` BMi2`T`2i�iBQM Q7 T`Q#�#BHBiv- �M/ Bi
BMi2`�+ib rBi? i?2 i?2Q`v Q7 `�M/QKM2bbX amTTQb2 QM2 ~BTb � +QBM (2n + 1)@iBK2bX
h?2M- #v bvKK2i`v- i?2 2p2Mi i?�i i?2 MmK#2` Q7 ?2�/b Bb H�`;2` i?�M Q` 2[m�H
iQ n + 1 ?�b T`Q#�#BHBiv 1

2 X AM K2�bm`2@i?2Q`2iB+ T`Q#�#BHBiv- i?Bb Bb #2+�mb2 i?2
MmK#2` Q7 TQbbB#H2 2[m�HHv@HBF2Hv Qmi+QK2b Bb 2n �M/ i?2 MmK#2` Q7 i?2 /2bB`�#H2
Qmi+QK2b Bb 2t�+iHv � ?�H7 Q7 BiX oBHH2 b?Qr2/ i?�i i?2`2 Bb � #2iiBM; bi`�i2;v bm+?
i?�i QM2 +�M /Qm#H2 i?2B` +�TBi�H r?2M i?2 /2bB`�#H2 2p2Mi Q++m`bX h?2 QM2 b?QmH/
F22T i?2B` +�TBi�H MQM@M2;�iBp2 �HQM; �Mv Qmi+QK2X h?2 `�iBQ Q7 i?2 }M�H +�TBi�H
�M/ i?2 BMBiB�H +�TBi�H Bb MQi?BM; #mi ;�K2@i?2Q`2iB+ T`Q#�#BHBivX

�Mv i?2Q`2K BM K2�bm`2@i?2Q`2iB+ T`Q#�#BHBiv b?QmH/ ?�p2 � ;�K2@i?2Q`2iB+
+QmMi2`T�`i T`QQ7- r?B+? `Qm;?Hv b�vBM; mb2b QMHv K�`iBM;�H2bX _2r`BiBM; T`QQ7b
pB� K�`iBM;�H2b K�F2b Bi 2�bv iQ �M�Hvx2 +QKTmi�#BHBiv Q7 K�`iBM;�H2bX _Qm;?Hv
b�vBM;- r2 +�M b2T�`�i2 i?2 T`QQ7 BMiQ +QKTmi�#BHBiv T�`i �M/ T`Q#�#BHBiv T�`iX
PM2 bm+? 2t�KTH2 rBHH #2 ;Bp2M BM Kv �MQi?2` i�HFX

UEX JBv�#2V J2BDB lMBp2`bBiv- C�T�M
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Some results of pS-reducibility
(a joint work with Toshio Suzuki and Masahiro Kumabe)

YUKI MIZUSAWA∗a

aTokyo Metropolitan University, Japan

Solovay reducibility is well-known notion in theory of algorithmic ran-
domness.We define pS-reducibility as a generalization of Solovay reducibility.

We have following results

1. Solovay reducible ⇒ pS-reducible

2. ¬ [pS-reducible ⇒ Solovay reducible]

3. pS-reducible ⇒ wtt-reducible

4. ¬ [wtt-reducible ⇒ pS-reducible]

5. pS-reducibility is standard reducibility.

We also study relationship between reducibility and continuity in analyt-
ics and have some results.
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ERDÖS-FELLER-KOLMOGOROV-PETROWSKY LAW OF THE

ITERATED LOGARITHM

KENSHI MIYABE

A fundamental results in measure-theoretic probability is the strong law of large
numbers (SLLN) shown by Borel (1901). Let Xi be i.i.d. random variables with

P (Xi = 1) = P (Xi = −1) =
1

2
. Let Sn =

∑n
i=1 Xi. Then,

Sn

n
→ 0 almost surely.

A more precise version was given by Khintchine (1924). With the same assump-
tion, we have

lim sup
n→∞

Sn√
2n ln lnn

= 1

almost surely. This is called the law of the iterated logarithm (LIL).
Further precise version was also known as the Erdös-Feller-Kolmogorov-Petrowsky

law of the iterated logarithm (EFKP-LIL). Let ψ be a positive increasing function.
Let

I(ψ) =

∫ ∞

1

ψ(λ)

λ
exp(−ψ(λ)2/2)dλ

If I(ψ) < ∞, then
Sn <

√
nψ(n)

for almost all n almost surely. If I(ψ) = ∞, then

Sn >
√
nψ(n)

for infinitely many n almost surely. We call the former the validity, and the latter
sharpness.

We restrict ψ to be computable. Notice that I(ψ) may not be computable even
if it converges, and I(ψ) can grow more slowly than any computable function. The
main claim in this talk is that computable randomness is sufficient to hold EFKP-
LIL, but Schnorr randomness is not sufficient. In fact, the speed of divergence or
convergence of I(ψ) exactly corresponds to the bound of the speed of divergence of
martingales.

The known proofs of EFKP-LIL for fair-coin tossing are fairy complicated.
The EFKP-LIL also holds for Brownian motion, whose proof uses the Ornstein-
Uhlenbeck process and its scale function. The proof can be naturally converted
to a game-theoretic proof. Finally, we construct a computable function ψ and a
Schnorr random sequence with some properties as usual in the theory of random-
ness.

(K. Miyabe) Meiji University, Japan
E-mail address: research@kenshi.miyabe.name
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Approaching the first-order strength of
Hindman’s theorem

Keita Yokoyama⋆

Japan Advanced Institute of Science and Technology
y-keita@jaist.ac.jp

The reverse mathematical study of Hindman’s theorem is initiated by Blass,
Hirst and Simpson [1]. They showed that Hindman’s theorem is provable from
ACA0

+, and it implies ACA0 over RCA0. Since then, many people tried to decide
the exact strength with many different approaches, but it is still open whether
Hindman’s theorem is equivalent to one of them or strictly in between. In this
talk, we will try to calibrate the first-order strength of HIndman’s theorem.
Hindman’s theorem is a Ramsey type theorem, and thus its first-order part can
be approximated by some density style statement as in [2, 3]. We will give a
characterization of the first-order part of Hindman’s theorem with this idea, and
then examine what is needed to prove the density style variation of Hindman’s
theorem. This is a joint work with Paul-Elliot Anglès d’Auriac.
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On proving parameterized polynomial time computability of 
compositions of fundamental functions 

Hiromichi Hamamoto, Akitoshi Kawamura, Martin Ziegler 

 
In a standard formulation of real complexity theory [1], the complexity of real 

functions is discussed in oracle machine model and is measured in terms of the 
required precision 𝑛.  This notion of complexity can only be applied to functions 
whose domain is compact, because the time for reading its arguments must be finite. 

To differentiate more accurately the complexity of reading or outputting and the 
computing procedure itself, parametrized complexity has been recently introduced 
[2].  In this framework, the domain of a real function is a set of tuples of real 
numbers 𝒙 and integer parameters 𝒌, for example {(𝑥, 𝑘) ∈ ℝ × ℕ | 𝑥 ∈ [−2𝑘, 2𝑘]}, 
and the complexity is measured in terms of 𝑛 and 𝒌.  As an important theorem, the 
closure property of parameterized polynomial time computable functions under 
composition is proved by simply connecting Turing machines computing each 
subfunction.  Moreover, fundamental functions, such as addition, multiplication, 
exponential and reciprocal, are proved to be parameterized polynomial time 
computable on appropriate domains.  

Then as a natural interest, we want to prove parameterized polynomial time 
computability of functions, such as 𝑓(𝑥) = 1/𝑒𝑥, which can be expressed as 
composition of reciprocal and exponential functions.  To grasp accurately 
parameterized polynomial time computability of such a function, each subfunction 
and their composition must be defined more carefully.  In this talk, first I will give a 
sound definition of composition of parameterized real functions.  Then after proving 
some properties and theorems about those functions, I will introduce output-sensitive 
polynomial time computability in order to more accurately characterize parameterized 
polynomial time computability of composition of reciprocal. 
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Computable analysis and computability in linear time
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For many applications, such as for instance computable analysis [5], one is interested in

computing functions where input and output are not finite strings but functions themselves.

That is, computing operators of type B ! B where B denotes the Baire space of all total

functions ' : {0, 1}⇤ ! {0, 1}⇤ on finite binary strings. The accepted computational model

for such type-2 computations are oracle machines or equivalent models.

Computational complexity theory deals with how e�ciently a problem can be solved in

terms of resources such as time and space. The computationally feasible functions are identi-

fied with those functions whose run-time can be bounded by a polynomial. For computations

at type level two the class of basic feasible functionals is widely accepted as the natural class

of feasible operations [3, 2].

Instead of only considering feasibility, one is often interested in which operations can

be performed e�ciently. A possible notion for e�cient computation is computability in

linear time. Already in classical complexity theory, robustness of linear-time computability

under reasonable changes in the computational model is not given [1]. Nonetheless, proofs

of linear-time computability are considered highly desirable in applications and there is a

well-developed theory for the model of multi-tape Turing machines [4].

In this work, we put forward a complexity class of type-two linear-time. For this definition

to be meaningful, a detailed protocol for oracle interactions has to be fixed. This includes

some choices the defined class is sensible to and we carefully discuss our choices and their

implications. We further discuss some properties and examples of linear-time and almost

linear-time computable operators and applications to computable analysis.
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