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1 Programme

Thursday 13

10:00-12:00 Fujiwara-Kawai, Kjos-Hanssen
12:00-13:30 Lunch Break

13:30-17:00 Suzuki, Pelupessy, Nakabayashi-Tanaka-Li, Miyabe

Friday 14
10:00-12:00 Mizusawa, Yu
12:00-13:30 Lunch Break

13:30-17:00 Barmpalias, Miyabe, de Brecht, Yokoyama

Saturday 15
10:00-12:00 Hamamoto-Kawamura-Ziegler, Miyaji

12:00-13:30 Lunch Break

13:30-15:30 Potapov, Kawamura-Steinberg-Thies



2 Abstracts

Permutations of the integers induce only the trivial automorphism of the Turing
degrees

Bjorn Kjos-Hanssen (University of Hawaii at Manoa)

Is there a nontrivial automorphism of the Turing degrees? It is a major open problem of com-
putability theory. Past results have limited how nontrivial automorphisms could possibly be. Here we
consider instead how an automorphism might be induced by a function on reals, or even by a function
on integers. We show that a permutation of w cannot induce any nontrivial automorphism of the
Turing degrees of members of 2*, and in fact any permutation that induces the trivial automorphism
must be computable. A main idea of the proof is to consider the members of 2“ to be probabilities,
and use statistics: from random outcomes from a distribution we can compute that distribution, but
not much more. In the second part of the talk, we answer a question of Schweber from 2013 by
giving an explicit example is given of a countable group that is not isomorphic to the automorphism
group of the Turing degrees Aut(Dyr). This is obtained by showing that Aut(Dr) has a presentation
recursive in Kleene’s 0. We also show that Aut(Dr) is a subgroup of a Aly-presentable group.

Chaitin’s number as a function

Yu Liang (Nanjing University)

Abstract: TBA

Monotonous betting strategies in warped casinos

George Barmpalias (Chinese Academy of Sciences)

Suppose that you know the casino roulette is rigged and there is an imbalance of red/black out-
comes, at least in the limit. Then there is a strategy which only bets on red or only bets on black,
which guarantees you unbounded profit. More generally, suppose that you have the restriction that
you cannot bet the dollars you earn by betting on red, to bet on black and vice-versa. In the same
casino there is a successful strategy of this kind, which does not depend on where the bias is (red
or black) or even the degree of the bias (ie how far from 1/2 each outcome frequency can get in the
limit).

Sometimes casinos are rigged in more subtle ways, while satisfying all commonly used laws of large
numbers like the relative frequency limit of each outcome tending to 1/2. Then are there simple
winning strategies? We study this question from an algorithmic perspective, which is a natural
approach since it is reasonable to expect that a strategy is programmable in a computer. We show
that in the case of programmable strategies the answer is positive while in the case of countable
mixtures of programmable strategies the answer is negative.

This talk is based on the following joint work with Fang Nan and Andy Lewis-Pye:
https://arxiv.org/pdf/1807.04635.pdf

Continuous valuations on quasi-Polish spaces

Matthew de Brecht (Kyoto University)



Quasi-Polish spaces are a class of countably based topological spaces which generalize both Polish
spaces (which are important in analysis and measure theory) and w-continuous domains (which are
important in theoretical computer science and algebra). A valuation is a particular kind of mapping
from the open subsets of a topological space to the real numbers, which shares many properties of a
measure.

In this talk, we will give a brief introduction to quasi-Polish spaces and present some basic re-
sults concerning continuous valuations on quasi-Polish spaces. Every Borel measure restricts to a
continuous valuation, and conversely every (locally finite) continuous valuation on a quasi-Polish
space extends (uniquely) to a Borel measure. Furthermore, the space of continuous valuations on a
quasi-Polish space is again a quasi-Polish space when given the weak topology.

Computer-assisted proofs via interval arithmetic: introduction and applications

Tomoyuki Miyaji (Meiji University)

In this talk, computer-assisted proofs using floating-point arithmetic are discussed from a viewpoint
of applied analysis. A basic strategy of the proof is to verify the existence of the true solution
near an approximate solution which is computed by a usual numerical method. Interval arithmetic
plays a fundamental role in the verification method. It returns an interval which encloses the true
value of arithmetic operation, taking all the rounding errors into account. One can use computer
to test whether a sufficient condition of some fixed-point theorem is satisfied. Such verification
methods are applied to many problems arising in dynamical systems, partial differential equations,
computational geometry, etc. This talk consists of two parts. In Part 1, a brief overview of studies
of verification methods based on interval arithmetic is provided, and some techniques of solving
finite dimensional problems are explained. For instance, the interval Newton method is a standard
method for solving nonlinear equations, and Lohner’s method is applied to an initial value problem
of ordinary differential equations. In Part 2, an application to a problem arising from mathematical
fluid dynamics is presented. Some boundary value problem for ordinary differential equations is
solved via the shooting method with the verification method.

Decision Problems in Matrix Semigroups: algorithmic decidability and computational
complexity

Igor Potapov (University of Liverpool)

The abstracts of Potapov’s talk and the contributed talks are added from the next page.



Decision Problems in Matrix Semigroups:

algorithmic decidability and computational complexity

Igor Potapov *

A large number of naturally defined matrix problems are still unanswered de-
spite the long history of matrix theory. Originally in Arthur Cayley’s “A Memoir
on the Theory of Matrices” in 1858, the notion of a matrix arises naturally from
abbreviated notations for a set of linear equations where he also defined associ-
ated operation of multiplication, notions of determinant, inverse matrices, etc.
Nowadays questions on matrices and matrix problems emerge in much larger
context as they appear in the analysis of various digital processes, verification
problems [18], in the context of control theory questions [2]. Moreover problems
on matrix products have been associated with several long standing open prob-
lems in algebraic number theory and transcendence theory, Nash equilibria, in
the theory of joint spectral radius and its applications [9, 14, 18, 19].

Many simply formulated and elementary problems for matrices are inher-
ently difficult to solve even in dimension two, and most of these problems become
undecidable in general starting from dimension three or four [6, 4, 7, 9, 10, 20].
Only few decidability results are known so far, see for example [1, 12, 5, 11, 13,
21, 22, 23].

Let us given a finite set of square matrices (known as a generator) which
is forming a multiplicative semigroup S. The classical computational problems
for matrix semigroups are:

e Membership (Decide whether a given matrix M belong to a semigroup S)
and two special cases such as: Identity (i.e. if M is the identity matrix)
and Mortality (i.e. if M is the zero matrix) problems

e Vector reachability (Decide for a given vectors u and v whether exist a
matrix M in S such that M - u = v)

e Scalar reachability (Decide for a given vectors u, v and a scalar L whether
exist a matrix M in S such that u- M - v=L)

e Freeness (Decide whether every matrix product in S is unique, i.e. whether
it is a code) and some variants of the freeness such as finite freeness prob-
lem, the recurrent matrix problem, the unique

*Department of  Computer Science, University of  Liverpool, Email:
potapov@liverpool.ac.uk.



e factorizability problem, vector freeness problem, vector ambiguity prob-
lems, etc.

The undecidability proofs in matrix semigroups are mainly based on vari-
ous techniques and methods for embedding universal computations into matrix
products. The case of dimension two is the most intriguing since there is some
evidence that if these problems are undecidable, then this cannot be proved
directly using previously known constructions. Due to a severe lack of methods
and techniques the status of decision problems for 2 x 2 matrices (like mem-
bership, vector reachability, freeness) is remaining to be a long standing open
problem not only for matrices over algebraic, complex, rational numbers but
also for integer matrices.

Recently, a new approach of translating numerical problems of 2 x 2 integer
matrices into variety of combinatorial and computational problems on words
and automata over group alphabet and studying their transformations as specific
rewriting systems [11, 13] have led to a few results on decidability and complexity
for some subclasses:

e The membership problem for 2 X 2 nonsingular integer matrices is decid-
able [23]. The algorithm relies on a translation of numerical problems on
matrices into combinatorial problems on words. It also makes use of some
algebraic properties of well-known subgroups of GL(2,Z) and various new
techniques and constructions that help to convert matrix equations into
the emptiness problem for intersection of regular languages.

e The Identity problem in SL(2,Z) is NP-complete [8, 5]. Our NP algo-
rithm is based on various new techniques that allow us to operate with
compressed word representations of matrices without explicit exponential
expansion.

e The vector reachability problem over a finitely generated semigroup of
matrices from SL(2,Z) and the point to point reachability (over rational
numbers) for fractional linear transformations, where associated matrices
are from SL(2,Z) are decidable [21].

Similar techniques have been applied to show that the freeness problem is co-NP-
hard [16] as well as to study the complexity of other freeness problems such as
finite freeness problem, the recurrent matrix problem, the unique factorizability
problem, vector freeness problem, vector ambiguity problems, etc [15].
Currently we focus on decidability of matrix problems in the Special Linear
Group in dimension three, 3 x 3 matrices with determinant one. In the seminal
paper of Paterson in 1970 [20], an injective morphism from pairs of words into
3 x 3 integral matrices was used to prove the undecidability of the mortality
problem, and later led to many undecidability results of matrix problems in
dimension three. In [17] it was shown that there is no embedding from pairs
of words into 3 x 3 integral matrices with determinant one, i.e., into SL(3,Z),
which provides strong evidence that computational problems in SL(3,Z) may be



decidable, as all known undecidability techniques for low-dimensional matrices
are based on encoding of Turing machine computations via Post’s Correspon-
dence Problem (PCP), which cannot be applied in SL(3, Z) following the results
of [17]. In the case of the PCP encoding, matrix products extended by right
multiplication correspond to a Turing machine simulation, and the only known
proof alternatives rely on recursively enumerable sets and Hilbert’s Tenth Prob-
lem, but provide undecidability for matrix equations of very high dimensions.

[3].
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Bar induction and bar recursion with respect to
continuity on Baire space

Makoto Fujiwara
Waseda Institute for Advanced Study, Waseda University

Bar induction is originally discussed by L. E. J. Brouwer under the name
of “bar theorem” in his intuitionistic mathematics but first formalized by
S. C. Kleene probably in late 1950’s. On the other hand, in his posthu-
mously published paper [1], C. Spector introduced a principle so-called “bar
recursion” and gave a consistency proof of classical analysis by extending K.
Godel’s consistency proof of Peano arithmetic by using the so-called Dialec-
tica interpretation. As already mentioned in [1], bar recursion is an analogue
of bar induction in the sense that bar recursion is a principle of definition
and bar induction is a corresponding principle of proof. In particular, bar
induction of type N (namely, formalized Brouwer’s bar theorem) is briefly
compared with bar recursion in an intuitionistic setting (namely, in the pres-
ence of continuity principle) in [1, Section 6 with footnote 5 and 6 written
by G. Kreisel]. However, the exact relation between them from the purely
constructive point of view is still unknown.

In this talk, we systematically study the relation between several forms
of bar induction of type N and bar recursion for continuous functions of type
NN — N, which is classically valid while bar recursion in general is not so.
Among other things, we show that the existence of bar recursor for continu-
ous functions with continuous modulus of type NY — N is derived from the
decidable bar induction of type N over the extensional versions of intuition-
istic arithmetic in all finite types with the axiom scheme of countable choice.
In addition, the converse is also the case over that system augmented with
the characteristic principles of the Dialectica interpretation.

This is a joint work with Tatsuji Kawai (Japan Advanced Institute of
Science and Technology).
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Independent distributions on a
multi-branching AND-OR tree of height 2

(a joint work with Mika Shigemizu and Koki Usami)

TOSHIO SUZUKI*®

& Tokyo Metropolitan University, Japan

We investigate an AND-OR tree T of height h and a probability distribu-
tion d on the truth assignments to the leaves. The cost denotes the expected
number of leaves probed during the comuptation. If an algorithm is a min-
imizer of the cost among all algorithms being considerd then it is called an
optimal algorithm (with respect to d). The following is a known result.

- (Tarsi,J.ACM, 1983) If d is an independent and identical distribution
(IID) such that the probability of a leaf having value 0 # 0,1 then (under a
certain assumptions) there exists an optimal algorithm that is depth-first.

Depth-first algorithms have an advantage that they are compatible with
induction on subtrees. We investigate the case where d is an independent
distribution (ID) and the probability depends on each leaf. The following
are known results.

- (S.,2018) If A > 3 then Tarsi-type result does not hold.

- (S.,2018) If T" is complete binary and h = 2 then Tarsi-type result holds.

We ask whether Tarsi-type result holds in the case of h = 2. Here, a child
node of the root is either an OR~gate or a leaf: The number of child nodes
of an internal node is arbitrary, and depends on an internal node.

- (Main result) If h = 2 then Tarsi-type result holds.

Our strategy of the proof is to reduce the problem to the case of directional
algorithms. We discuss why our proof does not apply to height 3 trees.
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Reverse mathematics of the finite downwards closed
subsets of N* ordered by inclusion

Florian Pelupessy

The following was conjectured by Hatzikiriakou and Simpson in Remark 6.2 in [1]].
Definition 1 We order k-tuples coordinatewise.
Theorem 2 RCA, proves that the following are equivalent:

1. w*” is well founded,

2. For every k: the finite downwards closed subsets of N*, ordered by inclusion, are a well partial
order.

We confirm that this is the case, also with RCAE'; as base theory.
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On one-variable modal pu-calculus

Misato Nakabayashi*

A Joint work with Wenjuan Lifand Kazuyuki Tanaka

Modal p-calculus, introduced by Kozen, is an extension of modal propositional logic by adding a
greatest fixpoint operator p and a least fixpoint operators v. It is well suited for specifying properties of
transition systems, and closely related to tree automata and parity games.

A fundamental issue on modal pi-calculus is the strictness of alternation hierarchy of the L,-formulas,
which are classified by their alternation depth, namely, the number of alternating blocks of y and v.
Roughly speaking, the class X{ = IIjj is the class of L,-formulas with no fixed-point operations; X/
(resp. II; ;) is the closure of X}, and IIj; under the composition (i.e., substitution) and y (resp. v). A
classical result by Rabin implies that Ay (= X5 N1II4) is equal to the compositions of X} and I, which
may also be represented by one-variable formulas.

In this talk, we first show the relationship between one-variable L,-formulas and weak alternating tree
automata. An alternating tree automaton A = (A, @, qz, d, ) with a priority function Q : Q@ — {0,...,n}
is said to be weak if § has the following additional property:

for all g € Q and a € A, if ¢’ occurs in 0(g,a), then Q(¢') < Q(q).

Then, we have

Theorem There is an effective translation procedure between a one-variable L,-formula ¢ and a weak
alternating tree automaton .4 so that for all finitely branching transition system (S, s),

(S,8) F <= (S,s) € L(A).

Furthermore, the alternation depth of a one-variable L,-formula ¢ corresponds to the number of
the priorities of the associated automaton A. Therefore, we conclude the strictness of the alternation
hierarchy of one-variable L,-formulas within A} from the strictness of the hierarchy of weak alternating
tree automata first proved by Mostowski.

Next, we consider infinitely branching transition systems, or especially recursively presented transition
systems (RPTS). Bradfield [1] adapted Lubarsky’s alternation hierarchy of arithmetic p-calculus (Eﬁ“ ,
I1;*) to show that for L,-formula ¢ € ¥, the denotation ||g|| in any RPTS is a $n* definable set of
integers, and conversely, for any arithmetic p-calculus formula ® € Zf” , there is an RPTS R and an
L,-formula ¢ € X}, such that ||®|| is definable by ¢ over R. Thus, Al in RPTS’s corresponds to the
class of sets S of integers such that both S and its complement are definable by a ¥}-monotone operator.
Therefore, in RPTS’s, A} is not equal to the compositions of ¥f' and IIf, which corresponds to the
compositions of IT} and Y1 in integers.

Finally, we introduce the transfinite extension of the hierarchy of one-variable modal p-calculus, and
show that it exhausts Af in RPTS’s.
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A TUTORIAL ON GAME-THEORETIC PROBABILITY AND
ALGORITHMIC RANDOMNESS

KENSHI MIYABE

I will give a tutorial on game-theoretic probability and algorithmic randomness.

Probability is a strange notion, and its formulation and interpretation is still
ongoing. A mathematical formulation of the notion of probability has been given
by Kolmogorov, which we call measure-theoretic probability theory. According to
the theory, probability is something with which some axioms hold. There are
some alternatives such as the theory of collectives by von Mises and algorithmic
probability by Solomonoff. In both theories, random sequences are essential notions.

The most well-known notion of randomness is by Martin-Lof. An infinite binary
sequence is ML-random if it is a typical sequence and it avoids all effective null
sets. ML-randomness can be characterized by unpredictability, say, random if any
effective betting strategy does not succeed along the sequence. Also by incom-
pressibility, random if every initial segment does not have short descriptions. We
have intuition that random if typical, unpredictable, or complex. One of interesting
things about the theory of randomness is that we can mathematically prove such
things.

The theory of randomness has a strong relation with computability theory.
Chaitin’s 2 is a left-c.e. real, which means it has a computable approximation from
below, and is ML-random at the same time. Solovay reducibility is a notion to com-
pare two left-c.e. reals in the sense of approximability. The top element of Solovay
degrees in left-c.e. reals is exactly the class of left-c.e. ML-random reals. There are
many statements about the relation between randomness and computability, which
one can not state in the measure-theoretic probability.

Game-probability probability has another interpretation of probability, and it
interacts with the theory of randomness. Suppose one flips a coin (2n + 1)-times.
Then, by symmetry, the event that the number of heads is larger than or equal
to n + 1 has probability % In measure-theoretic probability, this is because the
number of possible equally-likely outcomes is 2™ and the number of the desirable
outcomes is exactly a half of it. Ville showed that there is a betting strategy such
that one can double their capital when the desirable event occurs. The one should
keep their capital non-negative along any outcome. The ratio of the final capital
and the initial capital is nothing but game-theoretic probability.

Any theorem in measure-theoretic probability should have a game-theoretic
counterpart proof, which roughly saying uses only martingales. Rewriting proofs
via martingales makes it easy to analyze computability of martingales. Roughly
saying, we can separate the proof into computability part and probability part.
One such example will be given in my another talk.

(K. Miyabe) MELI UNIVERSITY, JAPAN
E-mail address: research@kenshi.miyabe.name



Some results of pS-reducibility

(a joint work with Toshio Suzuki and Masahiro Kumabe)

YUKI MIZUSAWA**

aTokyo Metropolitan University, Japan

Solovay reducibility is well-known notion in theory of algorithmic ran-
domness. We define pS-reducibility as a generalization of Solovay reducibility.
We have following results

1. Solovay reducible = pS-reducible

2. = [pS-reducible = Solovay reducible]
3. pS-reducible = wtt-reducible

4. = [wtt-reducible = pS-reducible]

5. pS-reducibility is standard reducibility.

We also study relationship between reducibility and continuity in analyt-
ics and have some results.
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ERDOS-FELLER-KOLMOGOROV-PETROWSKY LAW OF THE
ITERATED LOGARITHM

KENSHI MIYABE

A fundamental results in measure-theoretic probability is the strong law of large
numbers (SLLN) shown by Borel (1901). Let X; be i.i.d. random variables with
1 n Sn
PX;,=1)=P(X;=-1)= 3 Let S, = >, ; X;. Then, — — 0 almost surely.
n
A more precise version was given by Khintchine (1924). With the same assump-
tion, we have
limsup ——— =1
n—)oop V2nlnlnn
almost surely. This is called the law of the iterated logarithm (LIL).
Further precise version was also known as the Erdés-Feller- Kolmogorov-Petrowsky
law of the iterated logarithm (EFKP-LIL). Let ¢ be a positive increasing function.
Let

1) = [~ expl-u0/2an

If I(¢) < oo, then
Sn < V/nip(n)

for almost all n almost surely. If I(¢)) = oo, then

Sn > Vnip(n)
for infinitely many n almost surely. We call the former the validity, and the latter
sharpness.

We restrict ¢ to be computable. Notice that I(¢)) may not be computable even
if it converges, and I(¢) can grow more slowly than any computable function. The
main claim in this talk is that computable randomness is sufficient to hold EFKP-
LIL, but Schnorr randomness is not sufficient. In fact, the speed of divergence or
convergence of I () exactly corresponds to the bound of the speed of divergence of
martingales.

The known proofs of EFKP-LIL for fair-coin tossing are fairy complicated.
The EFKP-LIL also holds for Brownian motion, whose proof uses the Ornstein-
Uhlenbeck process and its scale function. The proof can be naturally converted
to a game-theoretic proof. Finally, we construct a computable function ¢ and a
Schnorr random sequence with some properties as usual in the theory of random-
ness.
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Approaching the first-order strength of
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The reverse mathematical study of Hindman’s theorem is initiated by Blass,
Hirst and Simpson [1]. They showed that Hindman’s theorem is provable from
ACAo", and it implies ACAq over RCAy. Since then, many people tried to decide
the exact strength with many different approaches, but it is still open whether
Hindman’s theorem is equivalent to one of them or strictly in between. In this
talk, we will try to calibrate the first-order strength of HIndman’s theorem.
Hindman’s theorem is a Ramsey type theorem, and thus its first-order part can
be approximated by some density style statement as in [2,3]. We will give a
characterization of the first-order part of Hindman’s theorem with this idea, and
then examine what is needed to prove the density style variation of Hindman’s
theorem. This is a joint work with Paul-Elliot Angles d’Auriac.
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On proving parameterized polynomial time computability of

compositions of fundamental functions

Hiromichi Hamamoto, Akitoshi Kawamura, Martin Ziegler

In a standard formulation of real complexity theory [1], the complexity of real
functions is discussed in oracle machine model and is measured in terms of the
required precision n. This notion of complexity can only be applied to functions
whose domain is compact, because the time for reading its arguments must be finite.

To differentiate more accurately the complexity of reading or outputting and the
computing procedure itself, parametrized complexity has been recently introduced
[2]. In this framework, the domain of a real function is a set of tuples of real
numbers x and integer parameters k, for example {(x,k) € Rx N | x € [—2F, 2]},
and the complexity is measured in terms of n and k. As an important theorem, the
closure property of parameterized polynomial time computable functions under
composition is proved by simply connecting Turing machines computing each
subfunction. Moreover, fundamental functions, such as addition, multiplication,
exponential and reciprocal, are proved to be parameterized polynomial time
computable on appropriate domains.

Then as a natural interest, we want to prove parameterized polynomial time
computability of functions, such as f(x) = 1/e*, which can be expressed as
composition of reciprocal and exponential functions. To grasp accurately
parameterized polynomial time computability of such a function, each subfunction
and their composition must be defined more carefully. In this talk, first I will give a
sound definition of composition of parameterized real functions. Then after proving
some properties and theorems about those functions, I will introduce output-sensitive
polynomial time computability in order to more accurately characterize parameterized

polynomial time computability of composition of reciprocal.
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For many applications, such as for instance computable analysis [5], one is interested in
computing functions where input and output are not finite strings but functions themselves.
That is, computing operators of type B — B where B denotes the Baire space of all total
functions ¢: {0,1}* — {0,1}* on finite binary strings. The accepted computational model
for such type-2 computations are oracle machines or equivalent models.

Computational complexity theory deals with how efficiently a problem can be solved in
terms of resources such as time and space. The computationally feasible functions are identi-
fied with those functions whose run-time can be bounded by a polynomial. For computations
at type level two the class of basic feasible functionals is widely accepted as the natural class
of feasible operations [3, 2].

Instead of only considering feasibility, one is often interested in which operations can
be performed efficiently. A possible notion for efficient computation is computability in
linear time. Already in classical complexity theory, robustness of linear-time computability
under reasonable changes in the computational model is not given [1]. Nonetheless, proofs
of linear-time computability are considered highly desirable in applications and there is a
well-developed theory for the model of multi-tape Turing machines [4].

In this work, we put forward a complexity class of type-two linear-time. For this definition
to be meaningful, a detailed protocol for oracle interactions has to be fixed. This includes
some choices the defined class is sensible to and we carefully discuss our choices and their
implications. We further discuss some properties and examples of linear-time and almost
linear-time computable operators and applications to computable analysis.
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