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Goal
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The goal of this talk is to give a proof idea of separation
between

(i) computable randomness and ML-randomness,
(ii) Schnorr randomness and computable

randomness.

These are basic facts in the theory of algorithmic
randomness.



Random
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X: an infinite binary sequence or a set of natural
numbers

010010110100100110101000101100010101011101001 · · ·

Seems random, but what mean?
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SR: the class of Schnorr random sets
CR: the class of computably random sets
MLR: the class of Martin-Löf random sets

SR ) CR ) MLR

The first task is to separate the notions.
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A (super)martingale is a function M : 2<ω → R+ such
that

M(σ) = (≥)
M(σ0) +M(σ1)

2

for all σ ∈ 2<ω.
This is called the fairness condition. M is a capital
process and the average should be the same as the
previous amount.
x ∈ R is comp. if ∃(an)n ∈ Q:comp. s.t. |an − x| < 2−n.
x ∈ R is left-c.e. if ∃(an)n ↑∈ Q: comp. s.t. limn an = x.
f : 2<ω → R+ is comp. or left-c.e. if so is f(σ) uniformly.





Definition
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X ∈ 2ω is ML-random if supnM(X ↾ n) < ∞ for each
left-c.e. martingale M .
X is computably random if supnM(X ↾ n) < ∞ for each
computable martingale M .
X is Schnorr random if M(X ↾ n) < f(n) a.a. for each
comp. mart. M and each comp. order f .

Random if the capital by any betting strategy is
bounded.
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Theorem 1 (Nies-Stephan-Terwijn 2005). The following
are equivalent.

(i) A is high.
(ii) There is a set B ≡T A that is computably random

but not ML-random.
(iii) There is a set C ≡T A that is Schnorr random but

not computably random.
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Enumerability
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Observation 2. We can computably enumerate all
left-c.e. martingales.
So there exists a universal left-c.e. martingale.
We can not computably enumerate all computable
martingales.
We can computably enumerate all partial computable
martingales.





ML-randomness
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Proposition 3. There exists a ML-random set.

Proof. For a universal martingale M , construct a set X
so that

σn+1 = σna, a ∈ {0, 1},

M(σn) ≥ M(σn+1),

σn � σn+1 ≺ X.

With a little trick,

X ≤T M ≤T ∅′



Computable randomness
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Proposition 4. There exists a computably random set
that is not ML-random.

We need a more delicate method.

(i) Construct a martingale M that multiplicatively
dominates all computable martingales.

(ii) Construct a computably random set X from M .
(iii) Construct another martingale N that succeeds

along X.



1st try
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Define a martingale M by

M =
∑

e

2−eMe

where {Me} is a non-effective enumeration of all
computable martingales.
Define a set X so that M does not increase along X.
By the non-effectiveness, the Turing degree of M
cannot be bounded and X may be really complicated.



2nd try, enumerate
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Define a supermartingale M by

M =
∑

e

2−eMe

where {Me} is a uniform sequence of all partial
computable martingales.
Define a set X so that M does not increase along X.
To compute X ↾ n, it suffices to know which Me(σ) is
defined.
The number of σ is bounded but not small.
The number of e is unbounded.



Unite
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M : a (maybe partial) computable martingale
f : a computable order
Modify M via f as follows.

M f(σ) =

{

M(σ) if M(τ) ↓ for all |τ | ≤ f(nσ)

↑

where

nσ = min{f(k) : k ∈ N, |σ| ≤ f(k)}





Wait

21 / 44

M : a (maybe partial) computable martingale
n: a natural number
Modify M via n as follows.

Mn(σ) = 1 for |σ| ≤ n

(Mn(σ) is defined even if M(σ) is undefined)
and

Mn(σa)

Mn(σ)
=

M(σa)

M(σ)
for |σ| ≥ n

(Mn(σ) is undefined if M(σ) is undefined).





3rd try
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f : a computable order (fast growing)
Define a supermartingale M by

M =
∑

e

2−eM f

e,f(e)

M multiplicatively dominates each M f

e,f(e),Me,f(e),Me.

Define a set X so that M does not increase along X.
To compute X ↾ n, it suffices to know which Me(σ) is
defined.
The number is roughly (f−1(n))2/2, which is much
smaller than n.



e <f(1) <f(2) … <f(n)

1 1 1 … 1

2 0 1 … 1

…

n 0 0 0 1



3rd try (continued)
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Hence,
K(X ↾ n) ≪ n

and X is not ML-random.
The computation of X ↾ n is valid only if the input
argument is correct.
So we can not replace K with KM for a decidable
machine M .
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Highness is necessary
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Which degree contains a set X ∈ CR \MLR?

Theorem 5 (Nies-Stephan-Terwijn 2005). If a set X is
Schnorr random and not high, then X is already
ML-random.

Recall that A is high if and only if A computes a function
f that dominates all computable functions.



Highness is sufficient
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Proposition 6. Every high set A computes a
computably random set.

We only care about computable martingales.
M : a computable martingale
gM(n): the maximum of time to compute M(σ) with
|σ| ≤ n
Then, gM is a computable order.



Proof 1
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{Me}: a uniform sequence of all partial computable
martingales
Define a supermartingale M by

M(σ) =
∑

e

2−eMe,e(σ)[f(e+ |σ|)]

Define a set X so that M does not increase along X.

X ≤T M ≤T f ≤T A



Proof 2
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Suppose Me is a total computable martingale.
f dominates gMe

∃e′ s.t. Me = M ′
e and gM ′

e

(n) ≤ f(e′ + n) for all n.
Since supnM(X ↾ n) is bounded, so is supnMe(X ↾ n).
Hence, X is computably random.



Encode
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To construct a computably random set X ≡T A, we use
Kučera-Gács coding.

Theorem 7 (Kučera ’85, Gács ’86). Every set is
computable from a ML-random set.

In particular, for each A ≥T ∅′, there exists a ML-random
set X ≡T A.
We skip the details.
By combining all techniques, given a high set A, we can
construct a set X ≡T A s.t. X ∈ CR \MLR.



Construction of Schnorr

random sets

Introduction

Construction of
computably random
sets

Some extension

Construction of
Schnorr random sets

❖ Schnorr
randomness

❖ Sparse sets

❖ Mistakes

❖ Martingale

❖ Martingale for
horses

❖ Martingale
strategy

❖ Martingale
strategy to work

❖ Conditions for n

❖ Busy beaver
function

❖ Modified BB
function

❖ Summary

❖ End

32 / 44



Schnorr randomness
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X is computably random if supnM(X ↾ n) < ∞ for each
computable martingale M .
X is Schnorr random if M(X ↾ n) < f(n) a.a. for each
comp. mart. M and each comp. order f .

Proposition 8. There exists a Schnorr random set X
that is not computably random.

We construct a set X s.t.

(i) every comp. mart. increases more slowly than an
comp. order along X.

(ii) some comp. mart. is unbounded along X.
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The function h(i) should be

(i) incomputable so that any computable martingale
grows more slowly than any computable order
(⇒ Schnorr random)

(ii) computable in some sense so that some
computable martingale succeeds (⇒ not
computably random)

Idea:

We allow the martingale to make mistakes
limited times.

So how many?



Martingale
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Martingales can refer to

(i) a tack used to control horses,
(ii) a betting strategy,

(iii) a nonnegative capital process introduced by Ville
in 1939 to criticize von Mises,

(iv) a stochastic process developed by Doob in
probability theory



Figure 1: Martingale from wikimedia
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Martingale strategy:
Is the next bit 0 or 1?
One starts to bet a yen on 0 (or 1).
If lost, then doubles their wager.
Almost surely, one will win eventually, after k-times lost.
The sum of lost capital is

a+ 2a+ 22a+ · · ·+ 2k−1a = (2k − 1)a

and they will get 2ka by the winning,
so they will gain a yen.
By iterating this, they will gain infinite sum of money.
This is the martingale strategy.



Martingale strategy to work
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The martingale strategy does not work in reality.
The number k of lost becomes larger a.s.
With finite initial capital, they will bankrupt eventually.

At n-th round, one starts to bet n−1.
If the number of lost is bounded by log n, then
he sum of lost capital is bounded by

2k − 1

n
≤

2log n − 1

n
≤ 1

By iterating this, one will gain

∑

n−1 = ∞



Conditions for n
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The function h should satisfy the following:

(i) h dominates every computable function.
(ii) H(x) is the set of the candidates of h(x).

(iii) The relation s ∈ H(x) is computable.
(iv) |H(x)| ≤ log x.

We construct such a function n by modifying the busy
beaver function.



Busy beaver function
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The busy beaver function BB(x) can be defined by

BB(x) = max{s : U(σ) ↓ at s, |σ| ≤ x}

where U is a universal Turing machine.

H(x) = {s : U(σ) ↓ at s, |σ| ≤ x}

can be the set of the candidates,
and s ∈ T (x) is a computable relation,
but |H(x)| seems larger than log x.



Modified BB function

42 / 44

H(x) = {〈e, x, s〉+ 1 : Φe(x) ↓ at s, e < log p(x)− 1}

and
h(x) = max{T (x)}

where p is comp. with p(x) ≤ x.
h dominates all computable functions.
t ∈ H(x) is a computable relation.
|H(x)| ≤ log p(x)− 1.
At p(x)-th round, H(x) will be used.
By filling the gap, we conclude ∃X ∈ SR \ CR.



Summary
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● We gave a proof idea of ∃X ∈ CR \MLR.
● The key ideas are to enumerate, unite and wait.
● Highness is the necessary and sufficient degree to

compute such sets.
● The Kučera-Gács coding allows us to compute the

converse.
● We gave a proof idea of ∃Y ∈ SR \ CR.
● The key notions are modified versions of the

martingale strategy and the busy beaver function.



End
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Thank you.
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