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Goal

The goal of this talk is to give a proof idea of separation
between

(i) computable randomness and ML-randomness,
(il) Schnorr randomness and computable
randomness.

These are basic facts in the theory of algorithmic
randomness.
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Random

X an infinite binary sequence or a set of natural
numbers

010010110100100110101000101100010101011101001 - - -

Seems random, but what mean?
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Randomness Zoo

Antohe Toeram




Randomness notions

SR: the class of Schnorr random sets

CR: the class of computably random sets

MLR: the class of Martin-Lof random sets
SR O CR 2 MLR

The first task is to separate the notions.
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Martingale

A (super)martingale is a function M : 2<“ — R™ such

that
M(o0) + M(o1)

2

M(o) = (2)

for all o € 2=,

This is called the fairness condition. M is a capital
process and the average should be the same as the
previous amount.

r € Ris comp. if 3(a,), € Q:comp. s.t. |a, — x| < 27".
r € Ris left-c.e. if 4(a,,), T€ Q: comp. s.t. lim,, a,, = x.

f 2<% — R" is comp. or left-c.e. if so is f(o) uniformly.
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Definition

X € 2¥is ML-random if sup,, M (X | n) < oo for each
left-c.e. martingale M.

X is computably random if sup,, M (X | n) < oo for each
computable martingale M.

X is Schnorr random if M (X | n) < f(n) a.a. for each
comp. mart. M and each comp. order f.

Random if the capital by any betting strategy is
bounded.
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Goal

Theorem 1 (Nies-Stephan-Terwijn 2005). The following
are equivalent.

(i) A is high.
(ii) There is a set B =1 A that is computably random
but not ML-random.
(iii) There is a set C =1 A that is Schnorr random but
not computably random.
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Enumerability

Observation 2. We can computably enumerate all
left-c.e. martingales.

So there exists a universal left-c.e. martingale.

We can not computably enumerate all computable
martingales.

We can computably enumerate all partial computable
martingales.
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ML-randomness
Proposition 3. There exists a ML-random set.

Proof. For a universal martingale M, construct a set X
so that

Opni1 = opa, a € {0,1},
M(Un) > M(On+1)a
On j Op+1 = X.

With a little trick,

X<r M<p W
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Computable randomness

Proposition 4. There exists a computably random set
that is not ML-random.

We need a more delicate method.

(i) Construct a martingale M that multiplicatively
dominates all computable martingales.
(i1) Construct a computably random set X from M.
(iii) Construct another martingale N that succeeds
along X.
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1st try

Define a martingale M by
M =Y 27°M,

where { M.} is a non-effective enumeration of all
computable martingales.

Define a set X so that M does not increase along X.
By the non-effectiveness, the Turing degree of M
cannot be bounded and X may be really complicated.
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2nd try, enumerate
Define a supermartingale M by
M =Y 27°M,

where {M.} is a uniform sequence of all partial
computable martingales.

Define a set X so that M does not increase along X.

To compute X | n, it suffices to know which M. (o) is

defined.
The number of o Is bounded but not small.
The number of e is unbounded.
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Unite

M a (maybe partial) computable martingale
f: a computable order
Modify M via f as follows.

M(o) if M() | forall 7| < f(n,)
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Wait

M a (maybe partial) computable martingale
n: a natural number
Modify M via n as follows.

M, (o) =1f1or |o| <n
(M, (o) is defined even if M (o) is undefined)
and

M,(oca) M(oa) s
M,(0) ~ Moy orlel=z

(M, (o) is undefined if M (o) is undefined).
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3rd try

f : a computable order (fast growing)
Define a supermartingale M by

M = Zz er

M multiplicatively dominates each M/ tey Mef(e)s Me.
Define a set X so that M does not increase along X.

To compute X | n, it suffices to know which M, (o) is

defined.
The number is roughly (f~1(n))?/2, which is much
smaller than n.

23/ 44






3rd try (continued)

Hence,
KX n)<n

and X is not ML-random.
The computation of X [ n is valid only if the input

argument is correct.
So we can not replace K with K, for a decidable

machine M.
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Highness is hecessary

Which degree contains a set X € CR \ MLR?

Theorem 5 (Nies-Stephan-Terwijn 2005). Ifa set X is

Schnorr random and not high, then X is already
ML-random.

Recall that A is high if and only if A computes a function
f that dominates all computable functions.
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Highness is sufficient

Proposition 6. Every high set A computes a
computably random set.

We only care about computable martingales.

M a computable martingale

gy (n): the maximum of time to compute M (o) with
o] <n

Then, g,, Is a computable order.
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Proof 1

{M.}: a uniform sequence of all partial computable
martingales
Define a supermartingale M by

Zz “M..(c)[f(e+ |o])]

Define a set X so that M does not increase along X.

X< M<rpf<r A
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Proof 2

Suppose M, is a total computable martingale.

f dominates gy,

Je’ s.t. M, = M] and gy (n) < f(e' + n) for all n.

Since sup,, M (X | n) is bounded, so is sup,, M.(X | n).
Hence, X is computably random.
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Encode

To construct a computably random set X =, A, we use
Kucera-Gacs coding.

Theorem 7 (Kucera ‘85, Gacs '86). Every set is
computable from a ML-random set.

In particular, for each A > (', there exists a ML-random
set X =1 A.

We skip the detalls.
By combining all techniques, given a high set A, we can
construct aset X =r As.t. X € CR\ MLR.
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Schnorr randomness

X is computably random if sup, M (X | n) < oo for each
computable martingale M.

X is Schnorr random if M (X | n) < f(n) a.a. for each
comp. mart. M and each comp. order f.

Proposition 8. There exists a Schnorr random set X
that is not computably random.

We construct a set X s.t.

(i) every comp. mart. increases more slowly than an
comp. order along X.

(ii) some comp. mart. is unbounded along X.
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Mistakes

The function h(:) should be

(i) Incomputable so that any computable martingale
grows more slowly than any computable order
(= Schnorr random)

(ii) computable in some sense so that some
computable martingale succeeds (= not
computably random)

|dea:

We allow the martingale to make mistakes
limited times.

So how many?
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Martingale

Martingales can refer to

(i) a tack used to control horses,
(i) a betting strategy,
(iii) a nonnegative capital process introduced by Ville
iIn 1939 to criticize von Mises,
(iv) a stochastic process developed by Doob in
probability theory
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Martingale strategy

Martingale strategy:

Is the next bit 0 or 17?

One starts to bet a yen on 0 (or 1).

If lost, then doubles their wager.

Almost surely, one will win eventually, after k-times lost.
The sum of lost capital is

a+2a+2%a+--+2"1a= (2" - 1)a

and they will get 2*a by the winning,

so they will gain a yen.

By iterating this, they will gain infinite sum of money.
This is the martingale strategy.
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Martingale strategy to work

The martingale strategy does not work in reality.
The number k of lost becomes larger a.s.
With finite initial capital, they will bankrupt eventually.

At n-th round, one starts to bet n .
If the number of lost is bounded by log n, then
he sum of lost capital is bounded by

|
< <

1

n n
By iterating this, one will gain

E n_lzoo
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Conditions for n

The function ~ should satisfy the following:

(i) h dominates every computable function.
(i) H(z) is the set of the candidates of h(z).
(iii) The relation s € H(x) is computable.

(iv) |H(x)| <logu.

We construct such a function n by modifying the busy
beaver function.
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Busy beaver function

The busy beaver function BB(x) can be defined by
BB(x) =max{s : U(o) | ats, |o| <x}
where U Is a universal Turing machine.
H(z)={s : U(o) | ats, |o| <z}

can be the set of the candidates,
and s € T'(x) is a computable relation,
but |H(x)| seems larger than log .
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Modified BB function

H(z)={{e,x,s)+1 : ®.(x)] ats, e<logp(z)—1}

and
h(x) = max{T(z)}

where p is comp. with p(x) < .

h dominates all computable functions.

t € H(x) is a computable relation.

H(z)| < logp(z) — 1.

At p(x)-th round, H(x) will be used.

By filling the gap, we conclude 4X € SR \ CR.
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Summary

We gave a proof idea of 3X € CR \ MLR.

The key ideas are to enumerate, unite and wait.
Highness is the necessary and sufficient degree to
compute such sets.

The Kucera-Gacs coding allows us to compute the
converse.

We gave a proof idea of 43Y € SR \ CR.

The key notions are modified versions of the
martingale strategy and the busy beaver function.
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End

Thank you.

\/ BBakE

MELJI UNIVERSITY
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