# Construction of random and non－random sets 

Kenshi Miyabe，Meiji University
宮部賢志，明治大学

9 Dec 2018 ＠SLS2018
Introduction

* Goal
* Random
* Randomness zoo
*Randomness
notions
* Randomness
notions
* Martingale
* Martingale
* Definition
Introduction

Construction of computably random sets

Some extension
Construction of Schnorr random sets

## Goal

The goal of this talk is to give a proof idea of separation between
(i) computable randomness and ML-randomness,
(ii) Schnorr randomness and computable randomness.
These are basic facts in the theory of algorithmic randomness.

## Random

$X$ : an infinite binary sequence or a set of natural numbers

## $010010110100100110101000101100010101011101001 \ldots$

Seems random, but what mean?

## Randommess Zoo



## Randomness notions

SR: the class of Schnorr random sets
CR: the class of computably random sets MLR: the class of Martin-Löf random sets

$$
\mathrm{SR} \supsetneq \mathrm{CR} \supsetneq \mathrm{MLR}
$$

The first task is to separate the notions.


## Martingale

A (super)martingale is a function $M: 2^{<\omega} \rightarrow \mathbb{R}^{+}$such that

$$
M(\sigma)=(\geq) \frac{M(\sigma 0)+M(\sigma 1)}{2}
$$

for all $\sigma \in 2^{<\omega}$.
This is called the fairness condition. $M$ is a capital process and the average should be the same as the previous amount.
$x \in \mathbb{R}$ is comp. if $\exists\left(a_{n}\right)_{n} \in \mathbb{Q}$ :comp. s.t. $\left|a_{n}-x\right|<2^{-n}$.
$x \in \mathbb{R}$ is left-c.e. if $\exists\left(a_{n}\right)_{n} \uparrow \in \mathbb{Q}$ : comp. s.t. $\lim _{n} a_{n}=x$.
$f: 2^{<\omega} \rightarrow \mathbb{R}^{+}$is comp. or left-c.e. if so is $f(\sigma)$ uniformly.


## Definition

$X \in 2^{\omega}$ is ML-random if $\sup _{n} M(X \upharpoonright n)<\infty$ for each left-c.e. martingale $M$.
$X$ is computably random if $\sup _{n} M(X \upharpoonright n)<\infty$ for each computable martingale $M$.
$X$ is Schnorr random if $M(X \upharpoonright n)<f(n)$ a.a. for each comp. mart. $M$ and each comp. order $f$.

Random if the capital by any betting strategy is bounded.

## Goal

Theorem 1 (Nies-Stephan-Terwijn 2005). The following are equivalent.
(i) $A$ is high.
(ii) There is a set $B \equiv_{T} A$ that is computably random but not ML-random.
(iii) There is a set $C \equiv_{T} A$ that is Schnorr random but not computably random.

Introduction

```
Construction of
computably random
Construction of
computably random
```

sets

* Enumerability
* Enumerability
* ML-randomness
* Computable
randomness
* 1st try
* 2nd try, enumerate
* Unite
* Unite
* Wait
* Wait
$\%$ 3rd try
* Number of
whether defined
* 3rd try (continued)
Some extension
Construction of
Schnorr random sets
sets
* Enumerability
* Enumerability
* ML-randomness
* Computable randomness
* 1st try
* 2nd try, enumerate
* Unite
* Unite
* Wait
* Wait
* 3rd try
* Number of
whether defined
* 3rd try (continued)

Some extension
Construction of Schnorr random sets

## Construction of computably random sets

## Enumerability

Observation 2. We can computably enumerate all left-c.e. martingales.
So there exists a universal left-c.e. martingale. We can not computably enumerate all computable martingales.
We can computably enumerate all partial computable martingales.

## Object

## Enumerability

## partial comp. func.

Yes

## total comp. func.

No

## left-c.e. mart.

Yes
partial comp. mart.
Yes
comp. mart.
No

## ML-randomness

Proposition 3. There exists a ML-random set.

Proof. For a universal martingale $M$, construct a set $X$ so that

$$
\begin{gathered}
\sigma_{n+1}=\sigma_{n} a, a \in\{0,1\}, \\
M\left(\sigma_{n}\right) \geq M\left(\sigma_{n+1}\right), \\
\sigma_{n} \preceq \sigma_{n+1} \prec X .
\end{gathered}
$$

With a little trick,

$$
X \leq_{T} M \leq_{T} \emptyset^{\prime}
$$

## Computable randomness

Proposition 4. There exists a computably random set that is not ML-random.

We need a more delicate method.
(i) Construct a martingale $M$ that multiplicatively dominates all computable martingales.
(ii) Construct a computably random set $X$ from $M$.
(iii) Construct another martingale $N$ that succeeds along $X$.

## 1st try

Define a martingale $M$ by

$$
M=\sum_{e} 2^{-e} M_{e}
$$

where $\left\{M_{e}\right\}$ is a non-effective enumeration of all computable martingales.
Define a set $X$ so that $M$ does not increase along $X$.
By the non-effectiveness, the Turing degree of $M$ cannot be bounded and $X$ may be really complicated.

## 2nd try, enumerate

Define a supermartingale $M$ by

$$
M=\sum_{e} 2^{-e} M_{e}
$$

where $\left\{M_{e}\right\}$ is a uniform sequence of all partial computable martingales.
Define a set $X$ so that $M$ does not increase along $X$.
To compute $X \upharpoonright n$, it suffices to know which $M_{e}(\sigma)$ is defined.
The number of $\sigma$ is bounded but not small.
The number of $e$ is unbounded.

## Unite

M: a (maybe partial) computable martingale $f$ : a computable order Modify $M$ via $f$ as follows.

$$
M^{f}(\sigma)=\left\{\begin{array}{l}
M(\sigma) \text { if } M(\tau) \downarrow \text { for all }|\tau| \leq f\left(n_{\sigma}\right) \\
\uparrow
\end{array}\right.
$$

where

$$
n_{\sigma}=\min \{f(k): k \in \mathbb{N},|\sigma| \leq f(k)\}
$$



## Wait

M: a (maybe partial) computable martingale $n$ : a natural number
Modify $M$ via $n$ as follows.

$$
M_{n}(\sigma)=1 \text { for }|\sigma| \leq n
$$

( $M_{n}(\sigma)$ is defined even if $M(\sigma)$ is undefined) and

$$
\frac{M_{n}(\sigma a)}{M_{n}(\sigma)}=\frac{M(\sigma a)}{M(\sigma)} \text { for }|\sigma| \geq n
$$

( $M_{n}(\sigma)$ is undefined if $M(\sigma)$ is undefined).


## 3rd try

$f$ : a computable order (fast growing)
Define a supermartingale $M$ by

$$
M=\sum_{e} 2^{-e} M_{e, f(e)}^{f}
$$

$M$ multiplicatively dominates each $M_{e, f(e)}^{f}, M_{e, f(e)}, M_{e}$. Define a set $X$ so that $M$ does not increase along $X$. To compute $X \upharpoonright n$, it suffices to know which $M_{e}(\sigma)$ is defined.
The number is roughly $\left(f^{-1}(n)\right)^{2} / 2$, which is much smaller than $n$.
e $<f(1)<f(2)$ $<f(n)$
1

-••

$$
1
$$

$$
2
$$

$$
0
$$0

$$
1
$$

...

$$
1
$$

$$
\mathrm{n}
$$


0
0
1

## 3rd try (continued)

Hence,

$$
K(X \upharpoonright n) \ll n
$$

and $X$ is not ML-random.
The computation of $X \upharpoonright n$ is valid only if the input argument is correct.
So we can not replace $K$ with $K_{M}$ for a decidable machine $M$.

```
Introduction
Construction of
computably random
sets
Some extension
* Highness is
necessary
* Highness is
sufficient
* Proof 1
* Proof 2
```


## Some extension

## Highness is necessary

Which degree contains a set $X \in \mathrm{CR} \backslash$ MLR?
Theorem 5 (Nies-Stephan-Terwijn 2005). If a set $X$ is Schnorr random and not high, then $X$ is already ML-random.

Recall that $A$ is high if and only if $A$ computes a function $f$ that dominates all computable functions.

## Highness is sufficient

Proposition 6. Every high set A computes a computably random set.

We only care about computable martingales.
$M$ : a computable martingale
$g_{M}(n)$ : the maximum of time to compute $M(\sigma)$ with $|\sigma| \leq n$
Then, $g_{M}$ is a computable order.

## Proof 1

$\left\{M_{e}\right\}$ : a uniform sequence of all partial computable martingales
Define a supermartingale $M$ by

$$
M(\sigma)=\sum_{e} 2^{-e} M_{e, e}(\sigma)[f(e+|\sigma|)]
$$

Define a set $X$ so that $M$ does not increase along $X$.

$$
X \leq_{T} M \leq_{T} f \leq_{T} A
$$

## Proof 2

Suppose $M_{e}$ is a total computable martingale.
$f$ dominates $g_{M_{e}}$
$\exists e^{\prime}$ s.t. $M_{e}=M_{e}^{\prime}$ and $g_{M_{e}^{\prime}}(n) \leq f\left(e^{\prime}+n\right)$ for all $n$.
Since $\sup _{n} M(X \upharpoonright n)$ is bounded, so is $\sup _{n} M_{e}(X \upharpoonright n)$. Hence, $X$ is computably random.

## Encode

To construct a computably random set $X \equiv_{T} A$, we use Kučera-Gács coding.

Theorem 7 (Kučera '85, Gács '86). Every set is computable from a ML-random set.

In particular, for each $A \geq_{T} \emptyset^{\prime}$, there exists a ML-random set $X \equiv_{T} A$.
We skip the details.
By combining all techniques, given a high set $A$, we can construct a set $X \equiv_{T} A$ s.t. $X \in \mathrm{CR} \backslash$ MLR.

```
Introduction
    Construction of
    computably random
sets
Some extension
Construction of
Schnorr random sets
* Schnorr
randomness
* Sparse sets
* Mistakes
* Martingale
* Martingale for
horses
* Martingale
strategy
* Martingale
strategy to work
* Conditions for n
* Busy beaver
function
* Modified BB
function
* Summary
* End
```


## Schnorr randomness

$X$ is computably random if $\sup _{n} M(X \upharpoonright n)<\infty$ for each computable martingale $M$.
$X$ is Schnorr random if $M(X \upharpoonright n)<f(n)$ a.a. for each comp. mart. $M$ and each comp. order $f$.

Proposition 8. There exists a Schnorr random set $X$ that is not computably random.

We construct a set $X$ s.t.
(i) every comp. mart. increases more slowly than an comp. order along $X$.
(ii) some comp. mart. is unbounded along $X$.

## sparse

## $12345 \cdots \quad h(1) \quad h(2)$


random
0 random 0


M:non-increasing
M: at most doubled

## Mistakes

The function $h(i)$ should be
(i) incomputable so that any computable martingale grows more slowly than any computable order ( $\Rightarrow$ Schnorr random)
(ii) computable in some sense so that some computable martingale succeeds ( $\Rightarrow$ not computably random)
Idea:
We allow the martingale to make mistakes limited times.

So how many?

## Martingale

Martingales can refer to
(i) a tack used to control horses,
(ii) a betting strategy,
(iii) a nonnegative capital process introduced by Ville in 1939 to criticize von Mises,
(iv) a stochastic process developed by Doob in probability theory


Figure 1: Martingale from wikimedia

## Martingale strategy

Martingale strategy:
Is the next bit 0 or 1?
One starts to bet $a$ yen on 0 (or 1).
If lost, then doubles their wager.
Almost surely, one will win eventually, after $k$-times lost.
The sum of lost capital is

$$
a+2 a+2^{2} a+\cdots+2^{k-1} a=\left(2^{k}-1\right) a
$$

and they will get $2^{k} a$ by the winning,
so they will gain $a$ yen.
By iterating this, they will gain infinite sum of money. This is the martingale strategy.

## Martingale strategy to work

The martingale strategy does not work in reality. The number $k$ of lost becomes larger a.s. With finite initial capital, they will bankrupt eventually.

At $n$-th round, one starts to bet $n^{-1}$.
If the number of lost is bounded by $\log n$, then he sum of lost capital is bounded by

$$
\frac{2^{k}-1}{n} \leq \frac{2^{\log n}-1}{n} \leq 1
$$

By iterating this, one will gain

$$
\sum n^{-1}=\infty
$$

## Conditions for $n$

The function $h$ should satisfy the following:
(i) $h$ dominates every computable function.
(ii) $H(x)$ is the set of the candidates of $h(x)$.
(iii) The relation $s \in H(x)$ is computable.
(iv) $|H(x)| \leq \log x$.

We construct such a function $n$ by modifying the busy beaver function.

## Busy beaver function

The busy beaver function $B B(x)$ can be defined by

$$
B B(x)=\max \{s: U(\sigma) \downarrow \text { at } s,|\sigma| \leq x\}
$$

where $U$ is a universal Turing machine.

$$
H(x)=\{s: U(\sigma) \downarrow \text { at } s,|\sigma| \leq x\}
$$

can be the set of the candidates, and $s \in T(x)$ is a computable relation, but $|H(x)|$ seems larger than $\log x$.

## Modified BB function

$$
H(x)=\left\{\langle e, x, s\rangle+1: \Phi_{e}(x) \downarrow \text { at } s, e<\log p(x)-1\right\}
$$

and

$$
h(x)=\max \{T(x)\}
$$

where $p$ is comp. with $p(x) \leq x$.
$h$ dominates all computable functions.
$t \in H(x)$ is a computable relation.
$|H(x)| \leq \log p(x)-1$.
At $p(x)$-th round, $H(x)$ will be used.
By filling the gap, we conclude $\exists X \in \mathrm{SR} \backslash \mathrm{CR}$.

## Summary

- We gave a proof idea of $\exists X \in \mathrm{CR} \backslash$ MLR.
- The key ideas are to enumerate, unite and wait.
- Highness is the necessary and sufficient degree to compute such sets.
- The Kučera-Gács coding allows us to compute the converse.
- We gave a proof idea of $\exists Y \in \mathrm{SR} \backslash \mathrm{CR}$.
- The key notions are modified versions of the martingale strategy and the busy beaver function.


## End

Thank you．


